L(s) = 1 | − 24.2i·5-s + 58i·7-s + 13.8·11-s − 20.7i·13-s + 306·17-s − 602.·19-s + 468i·23-s + 37·25-s − 1.46e3i·29-s + 110i·31-s + 1.40e3·35-s + 1.03e3i·37-s − 2.97e3·41-s − 2.88e3·43-s − 396i·47-s + ⋯ |
L(s) = 1 | − 0.969i·5-s + 1.18i·7-s + 0.114·11-s − 0.122i·13-s + 1.05·17-s − 1.66·19-s + 0.884i·23-s + 0.0592·25-s − 1.74i·29-s + 0.114i·31-s + 1.14·35-s + 0.759i·37-s − 1.76·41-s − 1.56·43-s − 0.179i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.6459226642\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6459226642\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 24.2iT - 625T^{2} \) |
| 7 | \( 1 - 58iT - 2.40e3T^{2} \) |
| 11 | \( 1 - 13.8T + 1.46e4T^{2} \) |
| 13 | \( 1 + 20.7iT - 2.85e4T^{2} \) |
| 17 | \( 1 - 306T + 8.35e4T^{2} \) |
| 19 | \( 1 + 602.T + 1.30e5T^{2} \) |
| 23 | \( 1 - 468iT - 2.79e5T^{2} \) |
| 29 | \( 1 + 1.46e3iT - 7.07e5T^{2} \) |
| 31 | \( 1 - 110iT - 9.23e5T^{2} \) |
| 37 | \( 1 - 1.03e3iT - 1.87e6T^{2} \) |
| 41 | \( 1 + 2.97e3T + 2.82e6T^{2} \) |
| 43 | \( 1 + 2.88e3T + 3.41e6T^{2} \) |
| 47 | \( 1 + 396iT - 4.87e6T^{2} \) |
| 53 | \( 1 + 1.12e3iT - 7.89e6T^{2} \) |
| 59 | \( 1 - 2.68e3T + 1.21e7T^{2} \) |
| 61 | \( 1 - 5.98e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 - 4.80e3T + 2.01e7T^{2} \) |
| 71 | \( 1 - 6.58e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 + 5.89e3T + 2.83e7T^{2} \) |
| 79 | \( 1 - 8.48e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 + 13.8T + 4.74e7T^{2} \) |
| 89 | \( 1 + 8.76e3T + 6.27e7T^{2} \) |
| 97 | \( 1 - 5.91e3T + 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.25956414003880706820223437073, −9.540739957788682049875974146481, −8.481937147047162956721966538713, −8.253645381392243787251220605178, −6.74935382347212281887900576114, −5.71707568254131179888104616009, −5.05039813869849369966718501602, −3.87807082957901220294997195080, −2.50603213485441464834279846211, −1.34453268586427533506611922395,
0.15988433332669184288079933666, 1.64889686292710059698867690061, 3.07772995700007501562644237282, 3.93296366845340768884598355175, 5.06387795348541500967621120396, 6.52685681212796169166746256605, 6.89926591036386455210925821746, 7.926568577177837480107636921226, 8.869195125078180814517429853246, 10.26132527961587393357509992981