L(s) = 1 | − 24.2i·5-s + 58i·7-s + 13.8·11-s − 20.7i·13-s + 306·17-s − 602.·19-s + 468i·23-s + 37·25-s − 1.46e3i·29-s + 110i·31-s + 1.40e3·35-s + 1.03e3i·37-s − 2.97e3·41-s − 2.88e3·43-s − 396i·47-s + ⋯ |
L(s) = 1 | − 0.969i·5-s + 1.18i·7-s + 0.114·11-s − 0.122i·13-s + 1.05·17-s − 1.66·19-s + 0.884i·23-s + 0.0592·25-s − 1.74i·29-s + 0.114i·31-s + 1.14·35-s + 0.759i·37-s − 1.76·41-s − 1.56·43-s − 0.179i·47-s + ⋯ |
Λ(s)=(=(576s/2ΓC(s)L(s)(−0.707−0.707i)Λ(5−s)
Λ(s)=(=(576s/2ΓC(s+2)L(s)(−0.707−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
576
= 26⋅32
|
Sign: |
−0.707−0.707i
|
Analytic conductor: |
59.5410 |
Root analytic conductor: |
7.71628 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ576(415,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 576, ( :2), −0.707−0.707i)
|
Particular Values
L(25) |
≈ |
0.6459226642 |
L(21) |
≈ |
0.6459226642 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+24.2iT−625T2 |
| 7 | 1−58iT−2.40e3T2 |
| 11 | 1−13.8T+1.46e4T2 |
| 13 | 1+20.7iT−2.85e4T2 |
| 17 | 1−306T+8.35e4T2 |
| 19 | 1+602.T+1.30e5T2 |
| 23 | 1−468iT−2.79e5T2 |
| 29 | 1+1.46e3iT−7.07e5T2 |
| 31 | 1−110iT−9.23e5T2 |
| 37 | 1−1.03e3iT−1.87e6T2 |
| 41 | 1+2.97e3T+2.82e6T2 |
| 43 | 1+2.88e3T+3.41e6T2 |
| 47 | 1+396iT−4.87e6T2 |
| 53 | 1+1.12e3iT−7.89e6T2 |
| 59 | 1−2.68e3T+1.21e7T2 |
| 61 | 1−5.98e3iT−1.38e7T2 |
| 67 | 1−4.80e3T+2.01e7T2 |
| 71 | 1−6.58e3iT−2.54e7T2 |
| 73 | 1+5.89e3T+2.83e7T2 |
| 79 | 1−8.48e3iT−3.89e7T2 |
| 83 | 1+13.8T+4.74e7T2 |
| 89 | 1+8.76e3T+6.27e7T2 |
| 97 | 1−5.91e3T+8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.25956414003880706820223437073, −9.540739957788682049875974146481, −8.481937147047162956721966538713, −8.253645381392243787251220605178, −6.74935382347212281887900576114, −5.71707568254131179888104616009, −5.05039813869849369966718501602, −3.87807082957901220294997195080, −2.50603213485441464834279846211, −1.34453268586427533506611922395,
0.15988433332669184288079933666, 1.64889686292710059698867690061, 3.07772995700007501562644237282, 3.93296366845340768884598355175, 5.06387795348541500967621120396, 6.52685681212796169166746256605, 6.89926591036386455210925821746, 7.926568577177837480107636921226, 8.869195125078180814517429853246, 10.26132527961587393357509992981