Properties

Label 576.5.b.f
Level 576576
Weight 55
Character orbit 576.b
Analytic conductor 59.54159.541
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,5,Mod(415,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.415");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: N N == 576=2632 576 = 2^{6} \cdot 3^{2}
Weight: k k == 5 5
Character orbit: [χ][\chi] == 576.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 59.541098736359.5410987363
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 26 2^{6}
Twist minimal: no (minimal twist has level 192)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+7β2q529β1q7+2β3q11+6β2q13+306q1787β3q19234β1q23+37q25+423β2q2955β1q31+203β3q35++5918q97+O(q100) q + 7 \beta_{2} q^{5} - 29 \beta_1 q^{7} + 2 \beta_{3} q^{11} + 6 \beta_{2} q^{13} + 306 q^{17} - 87 \beta_{3} q^{19} - 234 \beta_1 q^{23} + 37 q^{25} + 423 \beta_{2} q^{29} - 55 \beta_1 q^{31} + 203 \beta_{3} q^{35}+ \cdots + 5918 q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+1224q17+148q2511880q413852q492016q6523576q7335064q89+23672q97+O(q100) 4 q + 1224 q^{17} + 148 q^{25} - 11880 q^{41} - 3852 q^{49} - 2016 q^{65} - 23576 q^{73} - 35064 q^{89} + 23672 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== 2ζ123 2\zeta_{12}^{3} Copy content Toggle raw display
β2\beta_{2}== 4ζ1222 4\zeta_{12}^{2} - 2 Copy content Toggle raw display
β3\beta_{3}== 4ζ123+8ζ12 -4\zeta_{12}^{3} + 8\zeta_{12} Copy content Toggle raw display
ζ12\zeta_{12}== (β3+2β1)/8 ( \beta_{3} + 2\beta_1 ) / 8 Copy content Toggle raw display
ζ122\zeta_{12}^{2}== (β2+2)/4 ( \beta_{2} + 2 ) / 4 Copy content Toggle raw display
ζ123\zeta_{12}^{3}== (β1)/2 ( \beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/576Z)×\left(\mathbb{Z}/576\mathbb{Z}\right)^\times.

nn 6565 127127 325325
χ(n)\chi(n) 11 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
415.1
−0.866025 + 0.500000i
0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
0 0 0 24.2487i 0 58.0000i 0 0 0
415.2 0 0 0 24.2487i 0 58.0000i 0 0 0
415.3 0 0 0 24.2487i 0 58.0000i 0 0 0
415.4 0 0 0 24.2487i 0 58.0000i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.5.b.f 4
3.b odd 2 1 192.5.b.a 4
4.b odd 2 1 inner 576.5.b.f 4
8.b even 2 1 inner 576.5.b.f 4
8.d odd 2 1 inner 576.5.b.f 4
12.b even 2 1 192.5.b.a 4
24.f even 2 1 192.5.b.a 4
24.h odd 2 1 192.5.b.a 4
48.i odd 4 2 768.5.g.e 4
48.k even 4 2 768.5.g.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
192.5.b.a 4 3.b odd 2 1
192.5.b.a 4 12.b even 2 1
192.5.b.a 4 24.f even 2 1
192.5.b.a 4 24.h odd 2 1
576.5.b.f 4 1.a even 1 1 trivial
576.5.b.f 4 4.b odd 2 1 inner
576.5.b.f 4 8.b even 2 1 inner
576.5.b.f 4 8.d odd 2 1 inner
768.5.g.e 4 48.i odd 4 2
768.5.g.e 4 48.k even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T52+588 T_{5}^{2} + 588 acting on S5new(576,[χ])S_{5}^{\mathrm{new}}(576, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T2+588)2 (T^{2} + 588)^{2} Copy content Toggle raw display
77 (T2+3364)2 (T^{2} + 3364)^{2} Copy content Toggle raw display
1111 (T2192)2 (T^{2} - 192)^{2} Copy content Toggle raw display
1313 (T2+432)2 (T^{2} + 432)^{2} Copy content Toggle raw display
1717 (T306)4 (T - 306)^{4} Copy content Toggle raw display
1919 (T2363312)2 (T^{2} - 363312)^{2} Copy content Toggle raw display
2323 (T2+219024)2 (T^{2} + 219024)^{2} Copy content Toggle raw display
2929 (T2+2147148)2 (T^{2} + 2147148)^{2} Copy content Toggle raw display
3131 (T2+12100)2 (T^{2} + 12100)^{2} Copy content Toggle raw display
3737 (T2+1080000)2 (T^{2} + 1080000)^{2} Copy content Toggle raw display
4141 (T+2970)4 (T + 2970)^{4} Copy content Toggle raw display
4343 (T28346672)2 (T^{2} - 8346672)^{2} Copy content Toggle raw display
4747 (T2+156816)2 (T^{2} + 156816)^{2} Copy content Toggle raw display
5353 (T2+1267500)2 (T^{2} + 1267500)^{2} Copy content Toggle raw display
5959 (T27188912)2 (T^{2} - 7188912)^{2} Copy content Toggle raw display
6161 (T2+35831808)2 (T^{2} + 35831808)^{2} Copy content Toggle raw display
6767 (T223051952)2 (T^{2} - 23051952)^{2} Copy content Toggle raw display
7171 (T2+43401744)2 (T^{2} + 43401744)^{2} Copy content Toggle raw display
7373 (T+5894)4 (T + 5894)^{4} Copy content Toggle raw display
7979 (T2+72012196)2 (T^{2} + 72012196)^{2} Copy content Toggle raw display
8383 (T2192)2 (T^{2} - 192)^{2} Copy content Toggle raw display
8989 (T+8766)4 (T + 8766)^{4} Copy content Toggle raw display
9797 (T5918)4 (T - 5918)^{4} Copy content Toggle raw display
show more
show less