Properties

Label 192.5.b.a
Level $192$
Weight $5$
Character orbit 192.b
Analytic conductor $19.847$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [192,5,Mod(31,192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("192.31");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 192.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.8470329121\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 \beta_1 q^{3} + 7 \beta_{2} q^{5} - 29 \beta_{3} q^{7} + 27 q^{9} + 8 \beta_1 q^{11} - 6 \beta_{2} q^{13} - 63 \beta_{3} q^{15} - 306 q^{17} + 348 \beta_1 q^{19} + 87 \beta_{2} q^{21} + 234 \beta_{3} q^{23}+ \cdots + 216 \beta_1 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 108 q^{9} - 1224 q^{17} + 148 q^{25} - 288 q^{33} + 11880 q^{41} - 3852 q^{49} - 12528 q^{57} + 2016 q^{65} - 23576 q^{73} + 2916 q^{81} + 35064 q^{89} + 23672 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( -\zeta_{12}^{3} + 2\zeta_{12} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 4\zeta_{12}^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\zeta_{12}^{3} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{3} + 2\beta_1 ) / 4 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( ( \beta_{2} + 2 ) / 4 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( ( \beta_{3} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
31.1
0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
−0.866025 0.500000i
0 −5.19615 0 24.2487i 0 58.0000i 0 27.0000 0
31.2 0 −5.19615 0 24.2487i 0 58.0000i 0 27.0000 0
31.3 0 5.19615 0 24.2487i 0 58.0000i 0 27.0000 0
31.4 0 5.19615 0 24.2487i 0 58.0000i 0 27.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 192.5.b.a 4
3.b odd 2 1 576.5.b.f 4
4.b odd 2 1 inner 192.5.b.a 4
8.b even 2 1 inner 192.5.b.a 4
8.d odd 2 1 inner 192.5.b.a 4
12.b even 2 1 576.5.b.f 4
16.e even 4 2 768.5.g.e 4
16.f odd 4 2 768.5.g.e 4
24.f even 2 1 576.5.b.f 4
24.h odd 2 1 576.5.b.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
192.5.b.a 4 1.a even 1 1 trivial
192.5.b.a 4 4.b odd 2 1 inner
192.5.b.a 4 8.b even 2 1 inner
192.5.b.a 4 8.d odd 2 1 inner
576.5.b.f 4 3.b odd 2 1
576.5.b.f 4 12.b even 2 1
576.5.b.f 4 24.f even 2 1
576.5.b.f 4 24.h odd 2 1
768.5.g.e 4 16.e even 4 2
768.5.g.e 4 16.f odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 588 \) acting on \(S_{5}^{\mathrm{new}}(192, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - 27)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 588)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 3364)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 192)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 432)^{2} \) Copy content Toggle raw display
$17$ \( (T + 306)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} - 363312)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 219024)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 2147148)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 12100)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 1080000)^{2} \) Copy content Toggle raw display
$41$ \( (T - 2970)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - 8346672)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 156816)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 1267500)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 7188912)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 35831808)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 23051952)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 43401744)^{2} \) Copy content Toggle raw display
$73$ \( (T + 5894)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 72012196)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 192)^{2} \) Copy content Toggle raw display
$89$ \( (T - 8766)^{4} \) Copy content Toggle raw display
$97$ \( (T - 5918)^{4} \) Copy content Toggle raw display
show more
show less