Properties

Label 2-24e2-8.3-c4-0-11
Degree 22
Conductor 576576
Sign 0.7070.707i-0.707 - 0.707i
Analytic cond. 59.541059.5410
Root an. cond. 7.716287.71628
Motivic weight 44
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 24.2i·5-s + 58i·7-s − 13.8·11-s + 20.7i·13-s + 306·17-s + 602.·19-s + 468i·23-s + 37·25-s + 1.46e3i·29-s + 110i·31-s − 1.40e3·35-s − 1.03e3i·37-s − 2.97e3·41-s + 2.88e3·43-s − 396i·47-s + ⋯
L(s)  = 1  + 0.969i·5-s + 1.18i·7-s − 0.114·11-s + 0.122i·13-s + 1.05·17-s + 1.66·19-s + 0.884i·23-s + 0.0592·25-s + 1.74i·29-s + 0.114i·31-s − 1.14·35-s − 0.759i·37-s − 1.76·41-s + 1.56·43-s − 0.179i·47-s + ⋯

Functional equation

Λ(s)=(576s/2ΓC(s)L(s)=((0.7070.707i)Λ(5s)\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(5-s) \end{aligned}
Λ(s)=(576s/2ΓC(s+2)L(s)=((0.7070.707i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 576576    =    26322^{6} \cdot 3^{2}
Sign: 0.7070.707i-0.707 - 0.707i
Analytic conductor: 59.541059.5410
Root analytic conductor: 7.716287.71628
Motivic weight: 44
Rational: no
Arithmetic: yes
Character: χ576(415,)\chi_{576} (415, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 576, ( :2), 0.7070.707i)(2,\ 576,\ (\ :2),\ -0.707 - 0.707i)

Particular Values

L(52)L(\frac{5}{2}) \approx 1.9293360231.929336023
L(12)L(\frac12) \approx 1.9293360231.929336023
L(3)L(3) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
good5 124.2iT625T2 1 - 24.2iT - 625T^{2}
7 158iT2.40e3T2 1 - 58iT - 2.40e3T^{2}
11 1+13.8T+1.46e4T2 1 + 13.8T + 1.46e4T^{2}
13 120.7iT2.85e4T2 1 - 20.7iT - 2.85e4T^{2}
17 1306T+8.35e4T2 1 - 306T + 8.35e4T^{2}
19 1602.T+1.30e5T2 1 - 602.T + 1.30e5T^{2}
23 1468iT2.79e5T2 1 - 468iT - 2.79e5T^{2}
29 11.46e3iT7.07e5T2 1 - 1.46e3iT - 7.07e5T^{2}
31 1110iT9.23e5T2 1 - 110iT - 9.23e5T^{2}
37 1+1.03e3iT1.87e6T2 1 + 1.03e3iT - 1.87e6T^{2}
41 1+2.97e3T+2.82e6T2 1 + 2.97e3T + 2.82e6T^{2}
43 12.88e3T+3.41e6T2 1 - 2.88e3T + 3.41e6T^{2}
47 1+396iT4.87e6T2 1 + 396iT - 4.87e6T^{2}
53 11.12e3iT7.89e6T2 1 - 1.12e3iT - 7.89e6T^{2}
59 1+2.68e3T+1.21e7T2 1 + 2.68e3T + 1.21e7T^{2}
61 1+5.98e3iT1.38e7T2 1 + 5.98e3iT - 1.38e7T^{2}
67 1+4.80e3T+2.01e7T2 1 + 4.80e3T + 2.01e7T^{2}
71 16.58e3iT2.54e7T2 1 - 6.58e3iT - 2.54e7T^{2}
73 1+5.89e3T+2.83e7T2 1 + 5.89e3T + 2.83e7T^{2}
79 18.48e3iT3.89e7T2 1 - 8.48e3iT - 3.89e7T^{2}
83 113.8T+4.74e7T2 1 - 13.8T + 4.74e7T^{2}
89 1+8.76e3T+6.27e7T2 1 + 8.76e3T + 6.27e7T^{2}
97 15.91e3T+8.85e7T2 1 - 5.91e3T + 8.85e7T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.45085953295990005611144793697, −9.571696307597721673304371860127, −8.812714951223009955799413263895, −7.64609791055940916240710073499, −6.96853020118629211389195352374, −5.75912214044975777687463040411, −5.19108827014840352275216159500, −3.43941429242788714875623886050, −2.81874914104307685120001305152, −1.43059986297073727279643692032, 0.53589296286443654262950760966, 1.30226530012618004123728893309, 3.05382735755918681139550269290, 4.19854130125694695183558640409, 5.02888363041396077347805217448, 6.05334778555968845348108606937, 7.34578781610736621137443006633, 7.900591899914201678465857322466, 8.937703627283658690198028953553, 9.905198413074510719724238491748

Graph of the ZZ-function along the critical line