L(s) = 1 | + 24.2i·5-s + 58i·7-s − 13.8·11-s + 20.7i·13-s + 306·17-s + 602.·19-s + 468i·23-s + 37·25-s + 1.46e3i·29-s + 110i·31-s − 1.40e3·35-s − 1.03e3i·37-s − 2.97e3·41-s + 2.88e3·43-s − 396i·47-s + ⋯ |
L(s) = 1 | + 0.969i·5-s + 1.18i·7-s − 0.114·11-s + 0.122i·13-s + 1.05·17-s + 1.66·19-s + 0.884i·23-s + 0.0592·25-s + 1.74i·29-s + 0.114i·31-s − 1.14·35-s − 0.759i·37-s − 1.76·41-s + 1.56·43-s − 0.179i·47-s + ⋯ |
Λ(s)=(=(576s/2ΓC(s)L(s)(−0.707−0.707i)Λ(5−s)
Λ(s)=(=(576s/2ΓC(s+2)L(s)(−0.707−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
576
= 26⋅32
|
Sign: |
−0.707−0.707i
|
Analytic conductor: |
59.5410 |
Root analytic conductor: |
7.71628 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ576(415,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 576, ( :2), −0.707−0.707i)
|
Particular Values
L(25) |
≈ |
1.929336023 |
L(21) |
≈ |
1.929336023 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−24.2iT−625T2 |
| 7 | 1−58iT−2.40e3T2 |
| 11 | 1+13.8T+1.46e4T2 |
| 13 | 1−20.7iT−2.85e4T2 |
| 17 | 1−306T+8.35e4T2 |
| 19 | 1−602.T+1.30e5T2 |
| 23 | 1−468iT−2.79e5T2 |
| 29 | 1−1.46e3iT−7.07e5T2 |
| 31 | 1−110iT−9.23e5T2 |
| 37 | 1+1.03e3iT−1.87e6T2 |
| 41 | 1+2.97e3T+2.82e6T2 |
| 43 | 1−2.88e3T+3.41e6T2 |
| 47 | 1+396iT−4.87e6T2 |
| 53 | 1−1.12e3iT−7.89e6T2 |
| 59 | 1+2.68e3T+1.21e7T2 |
| 61 | 1+5.98e3iT−1.38e7T2 |
| 67 | 1+4.80e3T+2.01e7T2 |
| 71 | 1−6.58e3iT−2.54e7T2 |
| 73 | 1+5.89e3T+2.83e7T2 |
| 79 | 1−8.48e3iT−3.89e7T2 |
| 83 | 1−13.8T+4.74e7T2 |
| 89 | 1+8.76e3T+6.27e7T2 |
| 97 | 1−5.91e3T+8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.45085953295990005611144793697, −9.571696307597721673304371860127, −8.812714951223009955799413263895, −7.64609791055940916240710073499, −6.96853020118629211389195352374, −5.75912214044975777687463040411, −5.19108827014840352275216159500, −3.43941429242788714875623886050, −2.81874914104307685120001305152, −1.43059986297073727279643692032,
0.53589296286443654262950760966, 1.30226530012618004123728893309, 3.05382735755918681139550269290, 4.19854130125694695183558640409, 5.02888363041396077347805217448, 6.05334778555968845348108606937, 7.34578781610736621137443006633, 7.900591899914201678465857322466, 8.937703627283658690198028953553, 9.905198413074510719724238491748