Properties

Label 2-24e2-8.3-c4-0-11
Degree $2$
Conductor $576$
Sign $-0.707 - 0.707i$
Analytic cond. $59.5410$
Root an. cond. $7.71628$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 24.2i·5-s + 58i·7-s − 13.8·11-s + 20.7i·13-s + 306·17-s + 602.·19-s + 468i·23-s + 37·25-s + 1.46e3i·29-s + 110i·31-s − 1.40e3·35-s − 1.03e3i·37-s − 2.97e3·41-s + 2.88e3·43-s − 396i·47-s + ⋯
L(s)  = 1  + 0.969i·5-s + 1.18i·7-s − 0.114·11-s + 0.122i·13-s + 1.05·17-s + 1.66·19-s + 0.884i·23-s + 0.0592·25-s + 1.74i·29-s + 0.114i·31-s − 1.14·35-s − 0.759i·37-s − 1.76·41-s + 1.56·43-s − 0.179i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(576\)    =    \(2^{6} \cdot 3^{2}\)
Sign: $-0.707 - 0.707i$
Analytic conductor: \(59.5410\)
Root analytic conductor: \(7.71628\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{576} (415, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 576,\ (\ :2),\ -0.707 - 0.707i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.929336023\)
\(L(\frac12)\) \(\approx\) \(1.929336023\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 24.2iT - 625T^{2} \)
7 \( 1 - 58iT - 2.40e3T^{2} \)
11 \( 1 + 13.8T + 1.46e4T^{2} \)
13 \( 1 - 20.7iT - 2.85e4T^{2} \)
17 \( 1 - 306T + 8.35e4T^{2} \)
19 \( 1 - 602.T + 1.30e5T^{2} \)
23 \( 1 - 468iT - 2.79e5T^{2} \)
29 \( 1 - 1.46e3iT - 7.07e5T^{2} \)
31 \( 1 - 110iT - 9.23e5T^{2} \)
37 \( 1 + 1.03e3iT - 1.87e6T^{2} \)
41 \( 1 + 2.97e3T + 2.82e6T^{2} \)
43 \( 1 - 2.88e3T + 3.41e6T^{2} \)
47 \( 1 + 396iT - 4.87e6T^{2} \)
53 \( 1 - 1.12e3iT - 7.89e6T^{2} \)
59 \( 1 + 2.68e3T + 1.21e7T^{2} \)
61 \( 1 + 5.98e3iT - 1.38e7T^{2} \)
67 \( 1 + 4.80e3T + 2.01e7T^{2} \)
71 \( 1 - 6.58e3iT - 2.54e7T^{2} \)
73 \( 1 + 5.89e3T + 2.83e7T^{2} \)
79 \( 1 - 8.48e3iT - 3.89e7T^{2} \)
83 \( 1 - 13.8T + 4.74e7T^{2} \)
89 \( 1 + 8.76e3T + 6.27e7T^{2} \)
97 \( 1 - 5.91e3T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.45085953295990005611144793697, −9.571696307597721673304371860127, −8.812714951223009955799413263895, −7.64609791055940916240710073499, −6.96853020118629211389195352374, −5.75912214044975777687463040411, −5.19108827014840352275216159500, −3.43941429242788714875623886050, −2.81874914104307685120001305152, −1.43059986297073727279643692032, 0.53589296286443654262950760966, 1.30226530012618004123728893309, 3.05382735755918681139550269290, 4.19854130125694695183558640409, 5.02888363041396077347805217448, 6.05334778555968845348108606937, 7.34578781610736621137443006633, 7.900591899914201678465857322466, 8.937703627283658690198028953553, 9.905198413074510719724238491748

Graph of the $Z$-function along the critical line