L(s) = 1 | + 1.21·5-s − 24.7i·7-s − 108. i·11-s + 55.5·13-s + 463.·17-s + 406. i·19-s + 122. i·23-s − 623.·25-s + 101.·29-s − 1.34e3i·31-s − 30.1i·35-s − 2.65e3·37-s + 1.66e3·41-s − 181. i·43-s − 2.71e3i·47-s + ⋯ |
L(s) = 1 | + 0.0486·5-s − 0.505i·7-s − 0.899i·11-s + 0.328·13-s + 1.60·17-s + 1.12i·19-s + 0.232i·23-s − 0.997·25-s + 0.120·29-s − 1.39i·31-s − 0.0245i·35-s − 1.94·37-s + 0.991·41-s − 0.0982i·43-s − 1.22i·47-s + ⋯ |
Λ(s)=(=(576s/2ΓC(s)L(s)iΛ(5−s)
Λ(s)=(=(576s/2ΓC(s+2)L(s)iΛ(1−s)
Degree: |
2 |
Conductor: |
576
= 26⋅32
|
Sign: |
i
|
Analytic conductor: |
59.5410 |
Root analytic conductor: |
7.71628 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ576(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 576, ( :2), i)
|
Particular Values
L(25) |
≈ |
1.771426036 |
L(21) |
≈ |
1.771426036 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−1.21T+625T2 |
| 7 | 1+24.7iT−2.40e3T2 |
| 11 | 1+108.iT−1.46e4T2 |
| 13 | 1−55.5T+2.85e4T2 |
| 17 | 1−463.T+8.35e4T2 |
| 19 | 1−406.iT−1.30e5T2 |
| 23 | 1−122.iT−2.79e5T2 |
| 29 | 1−101.T+7.07e5T2 |
| 31 | 1+1.34e3iT−9.23e5T2 |
| 37 | 1+2.65e3T+1.87e6T2 |
| 41 | 1−1.66e3T+2.82e6T2 |
| 43 | 1+181.iT−3.41e6T2 |
| 47 | 1+2.71e3iT−4.87e6T2 |
| 53 | 1−2.17e3T+7.89e6T2 |
| 59 | 1−2.14e3iT−1.21e7T2 |
| 61 | 1+5.23e3T+1.38e7T2 |
| 67 | 1−2.81e3iT−2.01e7T2 |
| 71 | 1+8.04e3iT−2.54e7T2 |
| 73 | 1−4.17e3T+2.83e7T2 |
| 79 | 1+9.14e3iT−3.89e7T2 |
| 83 | 1+1.02e4iT−4.74e7T2 |
| 89 | 1−2.30e3T+6.27e7T2 |
| 97 | 1−2.29e3T+8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.07731082783855730103518448575, −9.025950704329039768557166374803, −8.020532112937324728558985570901, −7.41086507166706237348977553130, −6.05534094963163961055292216253, −5.51004459851188281834858734581, −3.99496041110997517617752882185, −3.29275622202748492389294255875, −1.68937674848484834684362009722, −0.48215990140188257288387630593,
1.19066936311643474382510110944, 2.45676899899810270783051474854, 3.61358053809685049539002720702, 4.87004131526064915889825322818, 5.68275888316339806602421460557, 6.80794237551553730104672105035, 7.64861186894341426552151242364, 8.647808190551609992805273026021, 9.492014479543106375391187004884, 10.27052320160886257953226869227