Properties

Label 576.5.g.o
Level 576576
Weight 55
Character orbit 576.g
Analytic conductor 59.54159.541
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,5,Mod(127,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.127");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: N N == 576=2632 576 = 2^{6} \cdot 3^{2}
Weight: k k == 5 5
Character orbit: [χ][\chi] == 576.g (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 59.541098736359.5410987363
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 2832 2^{8}\cdot 3^{2}
Twist minimal: no (minimal twist has level 96)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β2+22)q5+(β3β1)q7+(β322β1)q11+(2β2+14)q13+(22β2+6)q17+(23β318β1)q19+(24β394β1)q23++(252β22942)q97+O(q100) q + (\beta_{2} + 22) q^{5} + (\beta_{3} - \beta_1) q^{7} + (\beta_{3} - 22 \beta_1) q^{11} + ( - 2 \beta_{2} + 14) q^{13} + ( - 22 \beta_{2} + 6) q^{17} + ( - 23 \beta_{3} - 18 \beta_1) q^{19} + ( - 24 \beta_{3} - 94 \beta_1) q^{23}+ \cdots + ( - 252 \beta_{2} - 2942) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+88q5+56q13+24q17+1164q251672q296312q37+4504q41+7812q493336q531000q612224q65+17352q733136q7737488q85+20856q89+11768q97+O(q100) 4 q + 88 q^{5} + 56 q^{13} + 24 q^{17} + 1164 q^{25} - 1672 q^{29} - 6312 q^{37} + 4504 q^{41} + 7812 q^{49} - 3336 q^{53} - 1000 q^{61} - 2224 q^{65} + 17352 q^{73} - 3136 q^{77} - 37488 q^{85} + 20856 q^{89}+ \cdots - 11768 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== 4ζ123 4\zeta_{12}^{3} Copy content Toggle raw display
β2\beta_{2}== 12ζ123+24ζ12 -12\zeta_{12}^{3} + 24\zeta_{12} Copy content Toggle raw display
β3\beta_{3}== 24ζ12212 24\zeta_{12}^{2} - 12 Copy content Toggle raw display
ζ12\zeta_{12}== (β2+3β1)/24 ( \beta_{2} + 3\beta_1 ) / 24 Copy content Toggle raw display
ζ122\zeta_{12}^{2}== (β3+12)/24 ( \beta_{3} + 12 ) / 24 Copy content Toggle raw display
ζ123\zeta_{12}^{3}== (β1)/4 ( \beta_1 ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/576Z)×\left(\mathbb{Z}/576\mathbb{Z}\right)^\times.

nn 6565 127127 325325
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
127.1
−0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
0.866025 + 0.500000i
0 0 0 1.21539 0 24.7846i 0 0 0
127.2 0 0 0 1.21539 0 24.7846i 0 0 0
127.3 0 0 0 42.7846 0 16.7846i 0 0 0
127.4 0 0 0 42.7846 0 16.7846i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.5.g.o 4
3.b odd 2 1 192.5.g.c 4
4.b odd 2 1 inner 576.5.g.o 4
8.b even 2 1 288.5.g.c 4
8.d odd 2 1 288.5.g.c 4
12.b even 2 1 192.5.g.c 4
24.f even 2 1 96.5.g.b 4
24.h odd 2 1 96.5.g.b 4
48.i odd 4 1 768.5.b.a 4
48.i odd 4 1 768.5.b.f 4
48.k even 4 1 768.5.b.a 4
48.k even 4 1 768.5.b.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
96.5.g.b 4 24.f even 2 1
96.5.g.b 4 24.h odd 2 1
192.5.g.c 4 3.b odd 2 1
192.5.g.c 4 12.b even 2 1
288.5.g.c 4 8.b even 2 1
288.5.g.c 4 8.d odd 2 1
576.5.g.o 4 1.a even 1 1 trivial
576.5.g.o 4 4.b odd 2 1 inner
768.5.b.a 4 48.i odd 4 1
768.5.b.a 4 48.k even 4 1
768.5.b.f 4 48.i odd 4 1
768.5.b.f 4 48.k even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5244T5+52 T_{5}^{2} - 44T_{5} + 52 acting on S5new(576,[χ])S_{5}^{\mathrm{new}}(576, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T244T+52)2 (T^{2} - 44 T + 52)^{2} Copy content Toggle raw display
77 T4+896T2+173056 T^{4} + 896 T^{2} + 173056 Copy content Toggle raw display
1111 T4+16352T2+53465344 T^{4} + 16352 T^{2} + 53465344 Copy content Toggle raw display
1313 (T228T1532)2 (T^{2} - 28 T - 1532)^{2} Copy content Toggle raw display
1717 (T212T209052)2 (T^{2} - 12 T - 209052)^{2} Copy content Toggle raw display
1919 T4++49882542336 T^{4} + \cdots + 49882542336 Copy content Toggle raw display
2323 T4++11546791936 T^{4} + \cdots + 11546791936 Copy content Toggle raw display
2929 (T2+836T95276)2 (T^{2} + 836 T - 95276)^{2} Copy content Toggle raw display
3131 T4++4302869840896 T^{4} + \cdots + 4302869840896 Copy content Toggle raw display
3737 (T2+3156T+1321956)2 (T^{2} + 3156 T + 1321956)^{2} Copy content Toggle raw display
4141 (T22252T+975844)2 (T^{2} - 2252 T + 975844)^{2} Copy content Toggle raw display
4343 T4++85161246976 T^{4} + \cdots + 85161246976 Copy content Toggle raw display
4747 T4++2943228461056 T^{4} + \cdots + 2943228461056 Copy content Toggle raw display
5353 (T2+1668T8387244)2 (T^{2} + 1668 T - 8387244)^{2} Copy content Toggle raw display
5959 T4++88246634785024 T^{4} + \cdots + 88246634785024 Copy content Toggle raw display
6161 (T2+500T24820700)2 (T^{2} + 500 T - 24820700)^{2} Copy content Toggle raw display
6767 T4++400740822694144 T^{4} + \cdots + 400740822694144 Copy content Toggle raw display
7171 T4++12518236524544 T^{4} + \cdots + 12518236524544 Copy content Toggle raw display
7373 (T28676T+18790596)2 (T^{2} - 8676 T + 18790596)^{2} Copy content Toggle raw display
7979 T4++730173784105984 T^{4} + \cdots + 730173784105984 Copy content Toggle raw display
8383 T4++747665461014784 T^{4} + \cdots + 747665461014784 Copy content Toggle raw display
8989 (T210428T+18718596)2 (T^{2} - 10428 T + 18718596)^{2} Copy content Toggle raw display
9797 (T2+5884T18778364)2 (T^{2} + 5884 T - 18778364)^{2} Copy content Toggle raw display
show more
show less