Properties

Label 576.5.g.o
Level $576$
Weight $5$
Character orbit 576.g
Analytic conductor $59.541$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,5,Mod(127,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.127");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 576.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(59.5410987363\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 96)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 22) q^{5} + (\beta_{3} - \beta_1) q^{7} + (\beta_{3} - 22 \beta_1) q^{11} + ( - 2 \beta_{2} + 14) q^{13} + ( - 22 \beta_{2} + 6) q^{17} + ( - 23 \beta_{3} - 18 \beta_1) q^{19} + ( - 24 \beta_{3} - 94 \beta_1) q^{23}+ \cdots + ( - 252 \beta_{2} - 2942) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 88 q^{5} + 56 q^{13} + 24 q^{17} + 1164 q^{25} - 1672 q^{29} - 6312 q^{37} + 4504 q^{41} + 7812 q^{49} - 3336 q^{53} - 1000 q^{61} - 2224 q^{65} + 17352 q^{73} - 3136 q^{77} - 37488 q^{85} + 20856 q^{89}+ \cdots - 11768 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( 4\zeta_{12}^{3} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -12\zeta_{12}^{3} + 24\zeta_{12} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 24\zeta_{12}^{2} - 12 \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{2} + 3\beta_1 ) / 24 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( ( \beta_{3} + 12 ) / 24 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( ( \beta_1 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
127.1
−0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
0.866025 + 0.500000i
0 0 0 1.21539 0 24.7846i 0 0 0
127.2 0 0 0 1.21539 0 24.7846i 0 0 0
127.3 0 0 0 42.7846 0 16.7846i 0 0 0
127.4 0 0 0 42.7846 0 16.7846i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.5.g.o 4
3.b odd 2 1 192.5.g.c 4
4.b odd 2 1 inner 576.5.g.o 4
8.b even 2 1 288.5.g.c 4
8.d odd 2 1 288.5.g.c 4
12.b even 2 1 192.5.g.c 4
24.f even 2 1 96.5.g.b 4
24.h odd 2 1 96.5.g.b 4
48.i odd 4 1 768.5.b.a 4
48.i odd 4 1 768.5.b.f 4
48.k even 4 1 768.5.b.a 4
48.k even 4 1 768.5.b.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
96.5.g.b 4 24.f even 2 1
96.5.g.b 4 24.h odd 2 1
192.5.g.c 4 3.b odd 2 1
192.5.g.c 4 12.b even 2 1
288.5.g.c 4 8.b even 2 1
288.5.g.c 4 8.d odd 2 1
576.5.g.o 4 1.a even 1 1 trivial
576.5.g.o 4 4.b odd 2 1 inner
768.5.b.a 4 48.i odd 4 1
768.5.b.a 4 48.k even 4 1
768.5.b.f 4 48.i odd 4 1
768.5.b.f 4 48.k even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 44T_{5} + 52 \) acting on \(S_{5}^{\mathrm{new}}(576, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 44 T + 52)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 896 T^{2} + 173056 \) Copy content Toggle raw display
$11$ \( T^{4} + 16352 T^{2} + 53465344 \) Copy content Toggle raw display
$13$ \( (T^{2} - 28 T - 1532)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 12 T - 209052)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 49882542336 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 11546791936 \) Copy content Toggle raw display
$29$ \( (T^{2} + 836 T - 95276)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 4302869840896 \) Copy content Toggle raw display
$37$ \( (T^{2} + 3156 T + 1321956)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 2252 T + 975844)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 85161246976 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 2943228461056 \) Copy content Toggle raw display
$53$ \( (T^{2} + 1668 T - 8387244)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 88246634785024 \) Copy content Toggle raw display
$61$ \( (T^{2} + 500 T - 24820700)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 400740822694144 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 12518236524544 \) Copy content Toggle raw display
$73$ \( (T^{2} - 8676 T + 18790596)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 730173784105984 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 747665461014784 \) Copy content Toggle raw display
$89$ \( (T^{2} - 10428 T + 18718596)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 5884 T - 18778364)^{2} \) Copy content Toggle raw display
show more
show less