Properties

Label 2-24e2-4.3-c4-0-12
Degree $2$
Conductor $576$
Sign $-i$
Analytic cond. $59.5410$
Root an. cond. $7.71628$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.21·5-s + 24.7i·7-s + 108. i·11-s + 55.5·13-s + 463.·17-s − 406. i·19-s − 122. i·23-s − 623.·25-s + 101.·29-s + 1.34e3i·31-s + 30.1i·35-s − 2.65e3·37-s + 1.66e3·41-s + 181. i·43-s + 2.71e3i·47-s + ⋯
L(s)  = 1  + 0.0486·5-s + 0.505i·7-s + 0.899i·11-s + 0.328·13-s + 1.60·17-s − 1.12i·19-s − 0.232i·23-s − 0.997·25-s + 0.120·29-s + 1.39i·31-s + 0.0245i·35-s − 1.94·37-s + 0.991·41-s + 0.0982i·43-s + 1.22i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(576\)    =    \(2^{6} \cdot 3^{2}\)
Sign: $-i$
Analytic conductor: \(59.5410\)
Root analytic conductor: \(7.71628\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{576} (127, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 576,\ (\ :2),\ -i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.771426036\)
\(L(\frac12)\) \(\approx\) \(1.771426036\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 1.21T + 625T^{2} \)
7 \( 1 - 24.7iT - 2.40e3T^{2} \)
11 \( 1 - 108. iT - 1.46e4T^{2} \)
13 \( 1 - 55.5T + 2.85e4T^{2} \)
17 \( 1 - 463.T + 8.35e4T^{2} \)
19 \( 1 + 406. iT - 1.30e5T^{2} \)
23 \( 1 + 122. iT - 2.79e5T^{2} \)
29 \( 1 - 101.T + 7.07e5T^{2} \)
31 \( 1 - 1.34e3iT - 9.23e5T^{2} \)
37 \( 1 + 2.65e3T + 1.87e6T^{2} \)
41 \( 1 - 1.66e3T + 2.82e6T^{2} \)
43 \( 1 - 181. iT - 3.41e6T^{2} \)
47 \( 1 - 2.71e3iT - 4.87e6T^{2} \)
53 \( 1 - 2.17e3T + 7.89e6T^{2} \)
59 \( 1 + 2.14e3iT - 1.21e7T^{2} \)
61 \( 1 + 5.23e3T + 1.38e7T^{2} \)
67 \( 1 + 2.81e3iT - 2.01e7T^{2} \)
71 \( 1 - 8.04e3iT - 2.54e7T^{2} \)
73 \( 1 - 4.17e3T + 2.83e7T^{2} \)
79 \( 1 - 9.14e3iT - 3.89e7T^{2} \)
83 \( 1 - 1.02e4iT - 4.74e7T^{2} \)
89 \( 1 - 2.30e3T + 6.27e7T^{2} \)
97 \( 1 - 2.29e3T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.27052320160886257953226869227, −9.492014479543106375391187004884, −8.647808190551609992805273026021, −7.64861186894341426552151242364, −6.80794237551553730104672105035, −5.68275888316339806602421460557, −4.87004131526064915889825322818, −3.61358053809685049539002720702, −2.45676899899810270783051474854, −1.19066936311643474382510110944, 0.48215990140188257288387630593, 1.68937674848484834684362009722, 3.29275622202748492389294255875, 3.99496041110997517617752882185, 5.51004459851188281834858734581, 6.05534094963163961055292216253, 7.41086507166706237348977553130, 8.020532112937324728558985570901, 9.025950704329039768557166374803, 10.07731082783855730103518448575

Graph of the $Z$-function along the critical line