L(s) = 1 | − 520·7-s − 1.37e4·13-s + 6.63e4·19-s − 6.40e4·25-s − 3.01e3·31-s + 7.61e5·37-s + 1.52e4·43-s − 1.44e6·49-s + 1.97e6·61-s + 7.71e6·67-s − 4.00e6·73-s − 5.39e6·79-s + 7.16e6·91-s − 2.59e7·97-s − 1.01e7·103-s − 1.31e7·109-s − 2.11e6·121-s + 127-s + 131-s − 3.45e7·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 0.573·7-s − 1.73·13-s + 2.21·19-s − 0.820·25-s − 0.0181·31-s + 2.47·37-s + 0.0293·43-s − 1.75·49-s + 1.11·61-s + 3.13·67-s − 1.20·73-s − 1.23·79-s + 0.996·91-s − 2.88·97-s − 0.914·103-s − 0.975·109-s − 0.108·121-s − 1.27·133-s + 0.269·169-s + ⋯ |
Λ(s)=(=(331776s/2ΓC(s)2L(s)Λ(8−s)
Λ(s)=(=(331776s/2ΓC(s+7/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
331776
= 212⋅34
|
Sign: |
1
|
Analytic conductor: |
32376.1 |
Root analytic conductor: |
13.4139 |
Motivic weight: |
7 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 331776, ( :7/2,7/2), 1)
|
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | C22 | 1+12818pT2+p14T4 |
| 7 | C2 | (1+260T+p7T2)2 |
| 11 | C22 | 1+2110342T2+p14T4 |
| 13 | C2 | (1+530pT+p7T2)2 |
| 17 | C22 | 1+259975906T2+p14T4 |
| 19 | C2 | (1−33176T+p7T2)2 |
| 23 | C22 | 1+5812848334T2+p14T4 |
| 29 | C22 | 1+15420328618T2+p14T4 |
| 31 | C2 | (1+1508T+p7T2)2 |
| 37 | C2 | (1−380770T+p7T2)2 |
| 41 | C22 | 1+381757891762T2+p14T4 |
| 43 | C2 | (1−7640T+p7T2)2 |
| 47 | C22 | 1+693036689566T2+p14T4 |
| 53 | C22 | 1+1288434979834T2+p14T4 |
| 59 | C22 | 1−2355536454362T2+p14T4 |
| 61 | C2 | (1−988858T+p7T2)2 |
| 67 | C2 | (1−3857360T+p7T2)2 |
| 71 | C22 | 1+332728892782T2+p14T4 |
| 73 | C2 | (1+2004730T+p7T2)2 |
| 79 | C2 | (1+2699684T+p7T2)2 |
| 83 | C22 | 1+46919519671414T2+p14T4 |
| 89 | C22 | 1+28535629791058T2+p14T4 |
| 97 | C2 | (1+12957490T+p7T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.609245929252774116092130248649, −9.221859956455362371633823458944, −8.260855370354819093488253266429, −8.111452285143942220215996287628, −7.50850658010594023630425439633, −7.25549151194211566254629968668, −6.72852225184488612790515932904, −6.28102814052563532841224822124, −5.49910126988007551411248075087, −5.42879566852901528794226898365, −4.78073455698241697806145303348, −4.27813734619205883733352703719, −3.65953067931361611130374058525, −3.16182731428532129268243957028, −2.45376117781314261962851373677, −2.43617660095618298606537856012, −1.27444247989618622872836836205, −1.03706092418535297370139287557, 0, 0,
1.03706092418535297370139287557, 1.27444247989618622872836836205, 2.43617660095618298606537856012, 2.45376117781314261962851373677, 3.16182731428532129268243957028, 3.65953067931361611130374058525, 4.27813734619205883733352703719, 4.78073455698241697806145303348, 5.42879566852901528794226898365, 5.49910126988007551411248075087, 6.28102814052563532841224822124, 6.72852225184488612790515932904, 7.25549151194211566254629968668, 7.50850658010594023630425439633, 8.111452285143942220215996287628, 8.260855370354819093488253266429, 9.221859956455362371633823458944, 9.609245929252774116092130248649