Properties

Label 576.8.a.bi
Level $576$
Weight $8$
Character orbit 576.a
Self dual yes
Analytic conductor $179.934$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,8,Mod(1,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 576.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(179.933774679\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{10}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5}\cdot 3 \)
Twist minimal: no (minimal twist has level 9)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 96\sqrt{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{5} - 260 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{5} - 260 q^{7} - 20 \beta q^{11} - 6890 q^{13} + 78 \beta q^{17} + 33176 q^{19} - 104 \beta q^{23} + 14035 q^{25} + 455 \beta q^{29} - 1508 q^{31} - 260 \beta q^{35} + 380770 q^{37} + 290 \beta q^{41} + 7640 q^{43} - 1864 \beta q^{47} - 755943 q^{49} - 3393 \beta q^{53} - 1843200 q^{55} - 8920 \beta q^{59} + 988858 q^{61} - 6890 \beta q^{65} + 3857360 q^{67} - 13920 \beta q^{71} - 2004730 q^{73} + 5200 \beta q^{77} - 2699684 q^{79} + 8932 \beta q^{83} + 7188480 q^{85} + 25500 \beta q^{89} + 1791400 q^{91} + 33176 \beta q^{95} - 12957490 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 520 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 520 q^{7} - 13780 q^{13} + 66352 q^{19} + 28070 q^{25} - 3016 q^{31} + 761540 q^{37} + 15280 q^{43} - 1511886 q^{49} - 3686400 q^{55} + 1977716 q^{61} + 7714720 q^{67} - 4009460 q^{73} - 5399368 q^{79} + 14376960 q^{85} + 3582800 q^{91} - 25914980 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.16228
3.16228
0 0 0 −303.579 0 −260.000 0 0 0
1.2 0 0 0 303.579 0 −260.000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.8.a.bi 2
3.b odd 2 1 inner 576.8.a.bi 2
4.b odd 2 1 576.8.a.bj 2
8.b even 2 1 144.8.a.m 2
8.d odd 2 1 9.8.a.b 2
12.b even 2 1 576.8.a.bj 2
24.f even 2 1 9.8.a.b 2
24.h odd 2 1 144.8.a.m 2
40.e odd 2 1 225.8.a.q 2
40.k even 4 2 225.8.b.k 4
56.e even 2 1 441.8.a.k 2
72.l even 6 2 81.8.c.f 4
72.p odd 6 2 81.8.c.f 4
120.m even 2 1 225.8.a.q 2
120.q odd 4 2 225.8.b.k 4
168.e odd 2 1 441.8.a.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9.8.a.b 2 8.d odd 2 1
9.8.a.b 2 24.f even 2 1
81.8.c.f 4 72.l even 6 2
81.8.c.f 4 72.p odd 6 2
144.8.a.m 2 8.b even 2 1
144.8.a.m 2 24.h odd 2 1
225.8.a.q 2 40.e odd 2 1
225.8.a.q 2 120.m even 2 1
225.8.b.k 4 40.k even 4 2
225.8.b.k 4 120.q odd 4 2
441.8.a.k 2 56.e even 2 1
441.8.a.k 2 168.e odd 2 1
576.8.a.bi 2 1.a even 1 1 trivial
576.8.a.bi 2 3.b odd 2 1 inner
576.8.a.bj 2 4.b odd 2 1
576.8.a.bj 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(576))\):

\( T_{5}^{2} - 92160 \) Copy content Toggle raw display
\( T_{7} + 260 \) Copy content Toggle raw display
\( T_{11}^{2} - 36864000 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 92160 \) Copy content Toggle raw display
$7$ \( (T + 260)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 36864000 \) Copy content Toggle raw display
$13$ \( (T + 6890)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 560701440 \) Copy content Toggle raw display
$19$ \( (T - 33176)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 996802560 \) Copy content Toggle raw display
$29$ \( T^{2} - 19079424000 \) Copy content Toggle raw display
$31$ \( (T + 1508)^{2} \) Copy content Toggle raw display
$37$ \( (T - 380770)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 7750656000 \) Copy content Toggle raw display
$43$ \( (T - 7640)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 320209551360 \) Copy content Toggle raw display
$53$ \( T^{2} - 1060987299840 \) Copy content Toggle raw display
$59$ \( T^{2} - 7332839424000 \) Copy content Toggle raw display
$61$ \( (T - 988858)^{2} \) Copy content Toggle raw display
$67$ \( (T - 3857360)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 17857511424000 \) Copy content Toggle raw display
$73$ \( (T + 2004730)^{2} \) Copy content Toggle raw display
$79$ \( (T + 2699684)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 7352582307840 \) Copy content Toggle raw display
$89$ \( T^{2} - 59927040000000 \) Copy content Toggle raw display
$97$ \( (T + 12957490)^{2} \) Copy content Toggle raw display
show more
show less