L(s) = 1 | + 214. i·5-s + 616.·7-s + 5.12e3i·11-s − 39.5i·13-s − 3.77e3·17-s − 2.12e4i·19-s + 2.41e4·23-s + 3.22e4·25-s + 1.64e5i·29-s + 2.14e5·31-s + 1.32e5i·35-s − 7.67e4i·37-s + 2.08e5·41-s + 5.96e5i·43-s + 3.03e5·47-s + ⋯ |
L(s) = 1 | + 0.766i·5-s + 0.678·7-s + 1.16i·11-s − 0.00499i·13-s − 0.186·17-s − 0.709i·19-s + 0.413·23-s + 0.412·25-s + 1.25i·29-s + 1.29·31-s + 0.520i·35-s − 0.249i·37-s + 0.471·41-s + 1.14i·43-s + 0.427·47-s + ⋯ |
Λ(s)=(=(576s/2ΓC(s)L(s)(−0.258−0.965i)Λ(8−s)
Λ(s)=(=(576s/2ΓC(s+7/2)L(s)(−0.258−0.965i)Λ(1−s)
Degree: |
2 |
Conductor: |
576
= 26⋅32
|
Sign: |
−0.258−0.965i
|
Analytic conductor: |
179.933 |
Root analytic conductor: |
13.4139 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ576(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 576, ( :7/2), −0.258−0.965i)
|
Particular Values
L(4) |
≈ |
2.360703794 |
L(21) |
≈ |
2.360703794 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−214.iT−7.81e4T2 |
| 7 | 1−616.T+8.23e5T2 |
| 11 | 1−5.12e3iT−1.94e7T2 |
| 13 | 1+39.5iT−6.27e7T2 |
| 17 | 1+3.77e3T+4.10e8T2 |
| 19 | 1+2.12e4iT−8.93e8T2 |
| 23 | 1−2.41e4T+3.40e9T2 |
| 29 | 1−1.64e5iT−1.72e10T2 |
| 31 | 1−2.14e5T+2.75e10T2 |
| 37 | 1+7.67e4iT−9.49e10T2 |
| 41 | 1−2.08e5T+1.94e11T2 |
| 43 | 1−5.96e5iT−2.71e11T2 |
| 47 | 1−3.03e5T+5.06e11T2 |
| 53 | 1−7.73e4iT−1.17e12T2 |
| 59 | 1−6.22e5iT−2.48e12T2 |
| 61 | 1+2.89e6iT−3.14e12T2 |
| 67 | 1−3.20e6iT−6.06e12T2 |
| 71 | 1−4.09e6T+9.09e12T2 |
| 73 | 1−3.03e6T+1.10e13T2 |
| 79 | 1+4.74e6T+1.92e13T2 |
| 83 | 1+6.52e6iT−2.71e13T2 |
| 89 | 1−1.08e7T+4.42e13T2 |
| 97 | 1+1.10e7T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.910537753007487126679319324734, −9.017653295851025891194346335110, −7.989891518082642884851406550525, −7.11403316743546650710560777272, −6.49291035830447366843627636156, −5.10837709430538833911370839989, −4.43774350614545811787220734872, −3.09679608964965850092848549217, −2.19097246942979421054913178777, −1.05810400553615557685768833790,
0.49578418999686421563825969509, 1.27891714276018275772213092128, 2.53917011496576101443087458143, 3.79113884292515341053720765770, 4.76346555213741410128226635683, 5.60969443803752932696118706462, 6.53488151714982351103195491705, 7.86786045658766416303554168276, 8.402104867786523011649666409234, 9.180512908911820280444085135011