Properties

Label 2-24e2-8.5-c7-0-27
Degree $2$
Conductor $576$
Sign $-0.258 - 0.965i$
Analytic cond. $179.933$
Root an. cond. $13.4139$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 214. i·5-s + 616.·7-s + 5.12e3i·11-s − 39.5i·13-s − 3.77e3·17-s − 2.12e4i·19-s + 2.41e4·23-s + 3.22e4·25-s + 1.64e5i·29-s + 2.14e5·31-s + 1.32e5i·35-s − 7.67e4i·37-s + 2.08e5·41-s + 5.96e5i·43-s + 3.03e5·47-s + ⋯
L(s)  = 1  + 0.766i·5-s + 0.678·7-s + 1.16i·11-s − 0.00499i·13-s − 0.186·17-s − 0.709i·19-s + 0.413·23-s + 0.412·25-s + 1.25i·29-s + 1.29·31-s + 0.520i·35-s − 0.249i·37-s + 0.471·41-s + 1.14i·43-s + 0.427·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.258 - 0.965i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.258 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(576\)    =    \(2^{6} \cdot 3^{2}\)
Sign: $-0.258 - 0.965i$
Analytic conductor: \(179.933\)
Root analytic conductor: \(13.4139\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{576} (289, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 576,\ (\ :7/2),\ -0.258 - 0.965i)\)

Particular Values

\(L(4)\) \(\approx\) \(2.360703794\)
\(L(\frac12)\) \(\approx\) \(2.360703794\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 214. iT - 7.81e4T^{2} \)
7 \( 1 - 616.T + 8.23e5T^{2} \)
11 \( 1 - 5.12e3iT - 1.94e7T^{2} \)
13 \( 1 + 39.5iT - 6.27e7T^{2} \)
17 \( 1 + 3.77e3T + 4.10e8T^{2} \)
19 \( 1 + 2.12e4iT - 8.93e8T^{2} \)
23 \( 1 - 2.41e4T + 3.40e9T^{2} \)
29 \( 1 - 1.64e5iT - 1.72e10T^{2} \)
31 \( 1 - 2.14e5T + 2.75e10T^{2} \)
37 \( 1 + 7.67e4iT - 9.49e10T^{2} \)
41 \( 1 - 2.08e5T + 1.94e11T^{2} \)
43 \( 1 - 5.96e5iT - 2.71e11T^{2} \)
47 \( 1 - 3.03e5T + 5.06e11T^{2} \)
53 \( 1 - 7.73e4iT - 1.17e12T^{2} \)
59 \( 1 - 6.22e5iT - 2.48e12T^{2} \)
61 \( 1 + 2.89e6iT - 3.14e12T^{2} \)
67 \( 1 - 3.20e6iT - 6.06e12T^{2} \)
71 \( 1 - 4.09e6T + 9.09e12T^{2} \)
73 \( 1 - 3.03e6T + 1.10e13T^{2} \)
79 \( 1 + 4.74e6T + 1.92e13T^{2} \)
83 \( 1 + 6.52e6iT - 2.71e13T^{2} \)
89 \( 1 - 1.08e7T + 4.42e13T^{2} \)
97 \( 1 + 1.10e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.910537753007487126679319324734, −9.017653295851025891194346335110, −7.989891518082642884851406550525, −7.11403316743546650710560777272, −6.49291035830447366843627636156, −5.10837709430538833911370839989, −4.43774350614545811787220734872, −3.09679608964965850092848549217, −2.19097246942979421054913178777, −1.05810400553615557685768833790, 0.49578418999686421563825969509, 1.27891714276018275772213092128, 2.53917011496576101443087458143, 3.79113884292515341053720765770, 4.76346555213741410128226635683, 5.60969443803752932696118706462, 6.53488151714982351103195491705, 7.86786045658766416303554168276, 8.402104867786523011649666409234, 9.180512908911820280444085135011

Graph of the $Z$-function along the critical line