Properties

Label 576.8.d.h
Level 576576
Weight 88
Character orbit 576.d
Analytic conductor 179.934179.934
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,8,Mod(289,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.289");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 576=2632 576 = 2^{6} \cdot 3^{2}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 576.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 179.933774679179.933774679
Analytic rank: 00
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x84405x6+14555221x421358981620x2+23510900230416 x^{8} - 4405x^{6} + 14555221x^{4} - 21358981620x^{2} + 23510900230416 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 22832 2^{28}\cdot 3^{2}
Twist minimal: no (minimal twist has level 192)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β38β1)q5+(β4+5β2)q7+(β7156β5)q11+(4β3+91β1)q13+(3β6+9738)q17+(5β7329β5)q19++(1546β64090274)q97+O(q100) q + (\beta_{3} - 8 \beta_1) q^{5} + ( - \beta_{4} + 5 \beta_{2}) q^{7} + ( - \beta_{7} - 156 \beta_{5}) q^{11} + ( - 4 \beta_{3} + 91 \beta_1) q^{13} + ( - 3 \beta_{6} + 9738) q^{17} + (5 \beta_{7} - 329 \beta_{5}) q^{19}+ \cdots + ( - 1546 \beta_{6} - 4090274) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+77904q17318968q25677328q415065304q49+4500864q6512157808q73+41933136q8932722192q97+O(q100) 8 q + 77904 q^{17} - 318968 q^{25} - 677328 q^{41} - 5065304 q^{49} + 4500864 q^{65} - 12157808 q^{73} + 41933136 q^{89} - 32722192 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x84405x6+14555221x421358981620x2+23510900230416 x^{8} - 4405x^{6} + 14555221x^{4} - 21358981620x^{2} + 23510900230416 : Copy content Toggle raw display

β1\beta_{1}== (17620ν658220884ν4+256462994020ν2235194428533032)/17643853451421 ( 17620\nu^{6} - 58220884\nu^{4} + 256462994020\nu^{2} - 235194428533032 ) / 17643853451421 Copy content Toggle raw display
β2\beta_{2}== (4ν7+19412836ν542785881732ν3+94214472774624ν)/2940197162103 ( -4\nu^{7} + 19412836\nu^{5} - 42785881732\nu^{3} + 94214472774624\nu ) / 2940197162103 Copy content Toggle raw display
β3\beta_{3}== (ν6+4405ν49706417ν2+10679490810)/1212201 ( -\nu^{6} + 4405\nu^{4} - 9706417\nu^{2} + 10679490810 ) / 1212201 Copy content Toggle raw display
β4\beta_{4}== (2153311ν73566029145ν57816779551503ν3+28701553688751240ν)/8633725622228676 ( -2153311\nu^{7} - 3566029145\nu^{5} - 7816779551503\nu^{3} + 28701553688751240\nu ) / 8633725622228676 Copy content Toggle raw display
β5\beta_{5}== (4405ν7+14555221ν532079700477ν3+23510900230416ν)/17635844439414 ( -4405\nu^{7} + 14555221\nu^{5} - 32079700477\nu^{3} + 23510900230416\nu ) / 17635844439414 Copy content Toggle raw display
β6\beta_{6}== (96ν61027093692720)/14555221 ( -96\nu^{6} - 1027093692720 ) / 14555221 Copy content Toggle raw display
β7\beta_{7}== (8810ν729110442ν5+106867666586ν347021800460832ν)/980065720701 ( 8810\nu^{7} - 29110442\nu^{5} + 106867666586\nu^{3} - 47021800460832\nu ) / 980065720701 Copy content Toggle raw display
ν\nu== (2β7+24β5+48β4+9β2)/384 ( 2\beta_{7} + 24\beta_{5} + 48\beta_{4} + 9\beta_{2} ) / 384 Copy content Toggle raw display
ν2\nu^{2}== (β6+24β3+26430β1+211440)/192 ( \beta_{6} + 24\beta_{3} + 26430\beta _1 + 211440 ) / 192 Copy content Toggle raw display
ν3\nu^{3}== (2203β7+79284β5)/96 ( 2203\beta_{7} + 79284\beta_{5} ) / 96 Copy content Toggle raw display
ν4\nu^{4}== (4405β6+105720β3+58238502β1465908016)/192 ( -4405\beta_{6} + 105720\beta_{3} + 58238502\beta _1 - 465908016 ) / 192 Copy content Toggle raw display
ν5\nu^{5}== (9710822β7+582120744β5233059728β4+14500161β2)/384 ( 9710822\beta_{7} + 582120744\beta_{5} - 233059728\beta_{4} + 14500161\beta_{2} ) / 384 Copy content Toggle raw display
ν6\nu^{6}== (14555221β61027093692720)/96 ( -14555221\beta_{6} - 1027093692720 ) / 96 Copy content Toggle raw display
ν7\nu^{7}== (21412340486β71795376724648β5513896171664β4+95948047665β2)/384 ( -21412340486\beta_{7} - 1795376724648\beta_{5} - 513896171664\beta_{4} + 95948047665\beta_{2} ) / 384 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/576Z)×\left(\mathbb{Z}/576\mathbb{Z}\right)^\times.

nn 6565 127127 325325
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
289.1
40.2079 + 23.2141i
−40.2079 23.2141i
41.0740 23.7141i
−41.0740 + 23.7141i
41.0740 + 23.7141i
−41.0740 23.7141i
40.2079 23.2141i
−40.2079 + 23.2141i
0 0 0 435.979i 0 −34.1431 0 0 0
289.2 0 0 0 435.979i 0 34.1431 0 0 0
289.3 0 0 0 214.276i 0 −616.112 0 0 0
289.4 0 0 0 214.276i 0 616.112 0 0 0
289.5 0 0 0 214.276i 0 −616.112 0 0 0
289.6 0 0 0 214.276i 0 616.112 0 0 0
289.7 0 0 0 435.979i 0 −34.1431 0 0 0
289.8 0 0 0 435.979i 0 34.1431 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 289.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.8.d.h 8
3.b odd 2 1 192.8.d.c 8
4.b odd 2 1 inner 576.8.d.h 8
8.b even 2 1 inner 576.8.d.h 8
8.d odd 2 1 inner 576.8.d.h 8
12.b even 2 1 192.8.d.c 8
24.f even 2 1 192.8.d.c 8
24.h odd 2 1 192.8.d.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
192.8.d.c 8 3.b odd 2 1
192.8.d.c 8 12.b even 2 1
192.8.d.c 8 24.f even 2 1
192.8.d.c 8 24.h odd 2 1
576.8.d.h 8 1.a even 1 1 trivial
576.8.d.h 8 4.b odd 2 1 inner
576.8.d.h 8 8.b even 2 1 inner
576.8.d.h 8 8.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S8new(576,[χ])S_{8}^{\mathrm{new}}(576, [\chi]):

T54+235992T52+8727296400 T_{5}^{4} + 235992T_{5}^{2} + 8727296400 Copy content Toggle raw display
T74380760T72+442513296 T_{7}^{4} - 380760T_{7}^{2} + 442513296 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 (T4+235992T2+8727296400)2 (T^{4} + 235992 T^{2} + 8727296400)^{2} Copy content Toggle raw display
77 (T4380760T2+442513296)2 (T^{4} - 380760 T^{2} + 442513296)^{2} Copy content Toggle raw display
1111 (T4++396271131033600)2 (T^{4} + \cdots + 396271131033600)^{2} Copy content Toggle raw display
1313 (T4+6562560T2+10277093376)2 (T^{4} + 6562560 T^{2} + 10277093376)^{2} Copy content Toggle raw display
1717 (T219476T87834780)4 (T^{2} - 19476 T - 87834780)^{4} Copy content Toggle raw display
1919 (T4++25 ⁣ ⁣36)2 (T^{4} + \cdots + 25\!\cdots\!36)^{2} Copy content Toggle raw display
2323 (T4++21 ⁣ ⁣00)2 (T^{4} + \cdots + 21\!\cdots\!00)^{2} Copy content Toggle raw display
2929 (T4++41 ⁣ ⁣00)2 (T^{4} + \cdots + 41\!\cdots\!00)^{2} Copy content Toggle raw display
3131 (T4++22 ⁣ ⁣24)2 (T^{4} + \cdots + 22\!\cdots\!24)^{2} Copy content Toggle raw display
3737 (T4++50 ⁣ ⁣00)2 (T^{4} + \cdots + 50\!\cdots\!00)^{2} Copy content Toggle raw display
4141 (T2+169332T78581998044)4 (T^{2} + 169332 T - 78581998044)^{4} Copy content Toggle raw display
4343 (T4++36 ⁣ ⁣00)2 (T^{4} + \cdots + 36\!\cdots\!00)^{2} Copy content Toggle raw display
4747 (T4++44 ⁣ ⁣24)2 (T^{4} + \cdots + 44\!\cdots\!24)^{2} Copy content Toggle raw display
5353 (T4++18 ⁣ ⁣00)2 (T^{4} + \cdots + 18\!\cdots\!00)^{2} Copy content Toggle raw display
5959 (T4++22 ⁣ ⁣44)2 (T^{4} + \cdots + 22\!\cdots\!44)^{2} Copy content Toggle raw display
6161 (T4++63 ⁣ ⁣64)2 (T^{4} + \cdots + 63\!\cdots\!64)^{2} Copy content Toggle raw display
6767 (T4++10 ⁣ ⁣44)2 (T^{4} + \cdots + 10\!\cdots\!44)^{2} Copy content Toggle raw display
7171 (T4++39 ⁣ ⁣04)2 (T^{4} + \cdots + 39\!\cdots\!04)^{2} Copy content Toggle raw display
7373 (T2+18394317198524)4 (T^{2} + \cdots - 18394317198524)^{4} Copy content Toggle raw display
7979 (T4++73 ⁣ ⁣64)2 (T^{4} + \cdots + 73\!\cdots\!64)^{2} Copy content Toggle raw display
8383 (T4++74 ⁣ ⁣00)2 (T^{4} + \cdots + 74\!\cdots\!00)^{2} Copy content Toggle raw display
8989 (T2+4237589143836)4 (T^{2} + \cdots - 4237589143836)^{4} Copy content Toggle raw display
9797 (T2+31779299973500)4 (T^{2} + \cdots - 31779299973500)^{4} Copy content Toggle raw display
show more
show less