Properties

Label 2-24e2-8.5-c7-0-52
Degree $2$
Conductor $576$
Sign $-0.258 + 0.965i$
Analytic cond. $179.933$
Root an. cond. $13.4139$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 435. i·5-s − 34.1·7-s + 3.88e3i·11-s − 2.56e3i·13-s + 2.32e4·17-s − 2.38e4i·19-s − 6.04e4·23-s − 1.11e5·25-s − 3.93e4i·29-s − 7.04e4·31-s − 1.48e4i·35-s + 2.93e5i·37-s − 3.77e5·41-s + 1.01e6i·43-s + 2.19e5·47-s + ⋯
L(s)  = 1  + 1.55i·5-s − 0.0376·7-s + 0.879i·11-s − 0.323i·13-s + 1.14·17-s − 0.797i·19-s − 1.03·23-s − 1.43·25-s − 0.299i·29-s − 0.424·31-s − 0.0586i·35-s + 0.954i·37-s − 0.855·41-s + 1.95i·43-s + 0.308·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.258 + 0.965i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.258 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(576\)    =    \(2^{6} \cdot 3^{2}\)
Sign: $-0.258 + 0.965i$
Analytic conductor: \(179.933\)
Root analytic conductor: \(13.4139\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{576} (289, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 576,\ (\ :7/2),\ -0.258 + 0.965i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.05474440144\)
\(L(\frac12)\) \(\approx\) \(0.05474440144\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 435. iT - 7.81e4T^{2} \)
7 \( 1 + 34.1T + 8.23e5T^{2} \)
11 \( 1 - 3.88e3iT - 1.94e7T^{2} \)
13 \( 1 + 2.56e3iT - 6.27e7T^{2} \)
17 \( 1 - 2.32e4T + 4.10e8T^{2} \)
19 \( 1 + 2.38e4iT - 8.93e8T^{2} \)
23 \( 1 + 6.04e4T + 3.40e9T^{2} \)
29 \( 1 + 3.93e4iT - 1.72e10T^{2} \)
31 \( 1 + 7.04e4T + 2.75e10T^{2} \)
37 \( 1 - 2.93e5iT - 9.49e10T^{2} \)
41 \( 1 + 3.77e5T + 1.94e11T^{2} \)
43 \( 1 - 1.01e6iT - 2.71e11T^{2} \)
47 \( 1 - 2.19e5T + 5.06e11T^{2} \)
53 \( 1 + 1.74e6iT - 1.17e12T^{2} \)
59 \( 1 - 2.40e6iT - 2.48e12T^{2} \)
61 \( 1 + 2.75e6iT - 3.14e12T^{2} \)
67 \( 1 + 1.00e6iT - 6.06e12T^{2} \)
71 \( 1 - 1.53e6T + 9.09e12T^{2} \)
73 \( 1 + 6.06e6T + 1.10e13T^{2} \)
79 \( 1 + 5.69e6T + 1.92e13T^{2} \)
83 \( 1 - 4.17e6iT - 2.71e13T^{2} \)
89 \( 1 + 3.89e5T + 4.42e13T^{2} \)
97 \( 1 - 2.87e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.827689026708452889554945140567, −8.253188044494481725970057358501, −7.44938022497856911238042974345, −6.72906186240479914107262903661, −5.88313251121319706998782013263, −4.67137669235170673607711975924, −3.45037274438999891398822731570, −2.72705855728268404904116596905, −1.62242120913369670031461205016, −0.01077099369620408158576725613, 0.981416756164718725134344947955, 1.84441984677747658607421219456, 3.43320209143751308813407117148, 4.28965145226464887971017486002, 5.43759555286042420926168409528, 5.89458537532686087055822316341, 7.37797181993526185716293726175, 8.292033897736729514401547287746, 8.845142615071568624462643439989, 9.736700828949141378818274104489

Graph of the $Z$-function along the critical line