L(s) = 1 | + 435. i·5-s − 34.1·7-s + 3.88e3i·11-s − 2.56e3i·13-s + 2.32e4·17-s − 2.38e4i·19-s − 6.04e4·23-s − 1.11e5·25-s − 3.93e4i·29-s − 7.04e4·31-s − 1.48e4i·35-s + 2.93e5i·37-s − 3.77e5·41-s + 1.01e6i·43-s + 2.19e5·47-s + ⋯ |
L(s) = 1 | + 1.55i·5-s − 0.0376·7-s + 0.879i·11-s − 0.323i·13-s + 1.14·17-s − 0.797i·19-s − 1.03·23-s − 1.43·25-s − 0.299i·29-s − 0.424·31-s − 0.0586i·35-s + 0.954i·37-s − 0.855·41-s + 1.95i·43-s + 0.308·47-s + ⋯ |
Λ(s)=(=(576s/2ΓC(s)L(s)(−0.258+0.965i)Λ(8−s)
Λ(s)=(=(576s/2ΓC(s+7/2)L(s)(−0.258+0.965i)Λ(1−s)
Degree: |
2 |
Conductor: |
576
= 26⋅32
|
Sign: |
−0.258+0.965i
|
Analytic conductor: |
179.933 |
Root analytic conductor: |
13.4139 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ576(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 576, ( :7/2), −0.258+0.965i)
|
Particular Values
L(4) |
≈ |
0.05474440144 |
L(21) |
≈ |
0.05474440144 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−435.iT−7.81e4T2 |
| 7 | 1+34.1T+8.23e5T2 |
| 11 | 1−3.88e3iT−1.94e7T2 |
| 13 | 1+2.56e3iT−6.27e7T2 |
| 17 | 1−2.32e4T+4.10e8T2 |
| 19 | 1+2.38e4iT−8.93e8T2 |
| 23 | 1+6.04e4T+3.40e9T2 |
| 29 | 1+3.93e4iT−1.72e10T2 |
| 31 | 1+7.04e4T+2.75e10T2 |
| 37 | 1−2.93e5iT−9.49e10T2 |
| 41 | 1+3.77e5T+1.94e11T2 |
| 43 | 1−1.01e6iT−2.71e11T2 |
| 47 | 1−2.19e5T+5.06e11T2 |
| 53 | 1+1.74e6iT−1.17e12T2 |
| 59 | 1−2.40e6iT−2.48e12T2 |
| 61 | 1+2.75e6iT−3.14e12T2 |
| 67 | 1+1.00e6iT−6.06e12T2 |
| 71 | 1−1.53e6T+9.09e12T2 |
| 73 | 1+6.06e6T+1.10e13T2 |
| 79 | 1+5.69e6T+1.92e13T2 |
| 83 | 1−4.17e6iT−2.71e13T2 |
| 89 | 1+3.89e5T+4.42e13T2 |
| 97 | 1−2.87e6T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.827689026708452889554945140567, −8.253188044494481725970057358501, −7.44938022497856911238042974345, −6.72906186240479914107262903661, −5.88313251121319706998782013263, −4.67137669235170673607711975924, −3.45037274438999891398822731570, −2.72705855728268404904116596905, −1.62242120913369670031461205016, −0.01077099369620408158576725613,
0.981416756164718725134344947955, 1.84441984677747658607421219456, 3.43320209143751308813407117148, 4.28965145226464887971017486002, 5.43759555286042420926168409528, 5.89458537532686087055822316341, 7.37797181993526185716293726175, 8.292033897736729514401547287746, 8.845142615071568624462643439989, 9.736700828949141378818274104489