Properties

Label 2-5760-24.11-c1-0-57
Degree $2$
Conductor $5760$
Sign $-0.985 + 0.169i$
Analytic cond. $45.9938$
Root an. cond. $6.78187$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 0.116i·7-s − 5.10i·11-s − 3.81i·13-s − 2.16i·17-s + 0.828·19-s + 2.39·23-s + 25-s − 5.06·29-s + 1.83i·31-s + 0.116i·35-s − 0.421i·37-s − 4.80i·41-s − 7.39·43-s − 3.88·47-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.0440i·7-s − 1.54i·11-s − 1.05i·13-s − 0.525i·17-s + 0.190·19-s + 0.499·23-s + 0.200·25-s − 0.939·29-s + 0.329i·31-s + 0.0196i·35-s − 0.0692i·37-s − 0.750i·41-s − 1.12·43-s − 0.567·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.985 + 0.169i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.985 + 0.169i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5760\)    =    \(2^{7} \cdot 3^{2} \cdot 5\)
Sign: $-0.985 + 0.169i$
Analytic conductor: \(45.9938\)
Root analytic conductor: \(6.78187\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5760} (4031, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5760,\ (\ :1/2),\ -0.985 + 0.169i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7859935153\)
\(L(\frac12)\) \(\approx\) \(0.7859935153\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 + 0.116iT - 7T^{2} \)
11 \( 1 + 5.10iT - 11T^{2} \)
13 \( 1 + 3.81iT - 13T^{2} \)
17 \( 1 + 2.16iT - 17T^{2} \)
19 \( 1 - 0.828T + 19T^{2} \)
23 \( 1 - 2.39T + 23T^{2} \)
29 \( 1 + 5.06T + 29T^{2} \)
31 \( 1 - 1.83iT - 31T^{2} \)
37 \( 1 + 0.421iT - 37T^{2} \)
41 \( 1 + 4.80iT - 41T^{2} \)
43 \( 1 + 7.39T + 43T^{2} \)
47 \( 1 + 3.88T + 47T^{2} \)
53 \( 1 - 7.39T + 53T^{2} \)
59 \( 1 + 7.60iT - 59T^{2} \)
61 \( 1 - 1.17iT - 61T^{2} \)
67 \( 1 - 3.39T + 67T^{2} \)
71 \( 1 + 13.0T + 71T^{2} \)
73 \( 1 + 7.65T + 73T^{2} \)
79 \( 1 - 7.49iT - 79T^{2} \)
83 \( 1 + 1.09iT - 83T^{2} \)
89 \( 1 - 15.6iT - 89T^{2} \)
97 \( 1 + 4.06T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.78391711642023509613097459447, −7.18715738224646120720517522045, −6.33017264621681236500310297720, −5.51589718389375422664969875839, −5.08706026699377368898593652615, −3.87396678954188216868415586324, −3.32761575058947119148011066637, −2.57386900591019539441423804627, −1.13413327915060873349981294316, −0.21892304523687679296731591525, 1.45421150391781325594868390018, 2.19278820064574014103375060601, 3.28180869456361667953334963611, 4.23889456940082067184280152168, 4.60645814886477070042853456548, 5.56254892446515200458911732041, 6.44203439871789757920157012004, 7.21584831045744453685822899603, 7.49012878729655714447900218126, 8.528747020444721469325435817460

Graph of the $Z$-function along the critical line