L(s) = 1 | − 5-s − 0.116i·7-s − 5.10i·11-s − 3.81i·13-s − 2.16i·17-s + 0.828·19-s + 2.39·23-s + 25-s − 5.06·29-s + 1.83i·31-s + 0.116i·35-s − 0.421i·37-s − 4.80i·41-s − 7.39·43-s − 3.88·47-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 0.0440i·7-s − 1.54i·11-s − 1.05i·13-s − 0.525i·17-s + 0.190·19-s + 0.499·23-s + 0.200·25-s − 0.939·29-s + 0.329i·31-s + 0.0196i·35-s − 0.0692i·37-s − 0.750i·41-s − 1.12·43-s − 0.567·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.985 + 0.169i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.985 + 0.169i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7859935153\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7859935153\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + T \) |
good | 7 | \( 1 + 0.116iT - 7T^{2} \) |
| 11 | \( 1 + 5.10iT - 11T^{2} \) |
| 13 | \( 1 + 3.81iT - 13T^{2} \) |
| 17 | \( 1 + 2.16iT - 17T^{2} \) |
| 19 | \( 1 - 0.828T + 19T^{2} \) |
| 23 | \( 1 - 2.39T + 23T^{2} \) |
| 29 | \( 1 + 5.06T + 29T^{2} \) |
| 31 | \( 1 - 1.83iT - 31T^{2} \) |
| 37 | \( 1 + 0.421iT - 37T^{2} \) |
| 41 | \( 1 + 4.80iT - 41T^{2} \) |
| 43 | \( 1 + 7.39T + 43T^{2} \) |
| 47 | \( 1 + 3.88T + 47T^{2} \) |
| 53 | \( 1 - 7.39T + 53T^{2} \) |
| 59 | \( 1 + 7.60iT - 59T^{2} \) |
| 61 | \( 1 - 1.17iT - 61T^{2} \) |
| 67 | \( 1 - 3.39T + 67T^{2} \) |
| 71 | \( 1 + 13.0T + 71T^{2} \) |
| 73 | \( 1 + 7.65T + 73T^{2} \) |
| 79 | \( 1 - 7.49iT - 79T^{2} \) |
| 83 | \( 1 + 1.09iT - 83T^{2} \) |
| 89 | \( 1 - 15.6iT - 89T^{2} \) |
| 97 | \( 1 + 4.06T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.78391711642023509613097459447, −7.18715738224646120720517522045, −6.33017264621681236500310297720, −5.51589718389375422664969875839, −5.08706026699377368898593652615, −3.87396678954188216868415586324, −3.32761575058947119148011066637, −2.57386900591019539441423804627, −1.13413327915060873349981294316, −0.21892304523687679296731591525,
1.45421150391781325594868390018, 2.19278820064574014103375060601, 3.28180869456361667953334963611, 4.23889456940082067184280152168, 4.60645814886477070042853456548, 5.56254892446515200458911732041, 6.44203439871789757920157012004, 7.21584831045744453685822899603, 7.49012878729655714447900218126, 8.528747020444721469325435817460