L(s) = 1 | − 5-s − 0.116i·7-s − 5.10i·11-s − 3.81i·13-s − 2.16i·17-s + 0.828·19-s + 2.39·23-s + 25-s − 5.06·29-s + 1.83i·31-s + 0.116i·35-s − 0.421i·37-s − 4.80i·41-s − 7.39·43-s − 3.88·47-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 0.0440i·7-s − 1.54i·11-s − 1.05i·13-s − 0.525i·17-s + 0.190·19-s + 0.499·23-s + 0.200·25-s − 0.939·29-s + 0.329i·31-s + 0.0196i·35-s − 0.0692i·37-s − 0.750i·41-s − 1.12·43-s − 0.567·47-s + ⋯ |
Λ(s)=(=(5760s/2ΓC(s)L(s)(−0.985+0.169i)Λ(2−s)
Λ(s)=(=(5760s/2ΓC(s+1/2)L(s)(−0.985+0.169i)Λ(1−s)
Degree: |
2 |
Conductor: |
5760
= 27⋅32⋅5
|
Sign: |
−0.985+0.169i
|
Analytic conductor: |
45.9938 |
Root analytic conductor: |
6.78187 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ5760(4031,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 5760, ( :1/2), −0.985+0.169i)
|
Particular Values
L(1) |
≈ |
0.7859935153 |
L(21) |
≈ |
0.7859935153 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+T |
good | 7 | 1+0.116iT−7T2 |
| 11 | 1+5.10iT−11T2 |
| 13 | 1+3.81iT−13T2 |
| 17 | 1+2.16iT−17T2 |
| 19 | 1−0.828T+19T2 |
| 23 | 1−2.39T+23T2 |
| 29 | 1+5.06T+29T2 |
| 31 | 1−1.83iT−31T2 |
| 37 | 1+0.421iT−37T2 |
| 41 | 1+4.80iT−41T2 |
| 43 | 1+7.39T+43T2 |
| 47 | 1+3.88T+47T2 |
| 53 | 1−7.39T+53T2 |
| 59 | 1+7.60iT−59T2 |
| 61 | 1−1.17iT−61T2 |
| 67 | 1−3.39T+67T2 |
| 71 | 1+13.0T+71T2 |
| 73 | 1+7.65T+73T2 |
| 79 | 1−7.49iT−79T2 |
| 83 | 1+1.09iT−83T2 |
| 89 | 1−15.6iT−89T2 |
| 97 | 1+4.06T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.78391711642023509613097459447, −7.18715738224646120720517522045, −6.33017264621681236500310297720, −5.51589718389375422664969875839, −5.08706026699377368898593652615, −3.87396678954188216868415586324, −3.32761575058947119148011066637, −2.57386900591019539441423804627, −1.13413327915060873349981294316, −0.21892304523687679296731591525,
1.45421150391781325594868390018, 2.19278820064574014103375060601, 3.28180869456361667953334963611, 4.23889456940082067184280152168, 4.60645814886477070042853456548, 5.56254892446515200458911732041, 6.44203439871789757920157012004, 7.21584831045744453685822899603, 7.49012878729655714447900218126, 8.528747020444721469325435817460