Properties

Label 5760.2.b.i
Level $5760$
Weight $2$
Character orbit 5760.b
Analytic conductor $45.994$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5760,2,Mod(4031,5760)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5760, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5760.4031");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5760 = 2^{7} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5760.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.9938315643\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{11} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{5} + (\beta_{4} + \beta_{3}) q^{7} + ( - \beta_{3} + \beta_{2}) q^{11} + (\beta_{4} + \beta_{3} + \beta_{2}) q^{13} + ( - \beta_{4} + \beta_{2}) q^{17} + (\beta_{5} - 2) q^{19} + ( - \beta_{6} - \beta_{5}) q^{23}+ \cdots + (3 \beta_{7} + \beta_{6} + 2 \beta_{5} + 2) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{5} - 16 q^{19} + 8 q^{25} - 16 q^{29} + 16 q^{47} - 24 q^{49} - 32 q^{67} - 16 q^{73} + 16 q^{77} - 80 q^{91} + 16 q^{95} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( 4\zeta_{16}^{4} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\zeta_{16}^{5} + 2\zeta_{16}^{3} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \zeta_{16}^{6} + \zeta_{16}^{2} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 2\zeta_{16}^{7} + 2\zeta_{16} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -2\zeta_{16}^{6} + 2\zeta_{16}^{2} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -2\zeta_{16}^{7} - 2\zeta_{16}^{5} + 2\zeta_{16}^{3} + 2\zeta_{16} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -2\zeta_{16}^{7} + 2\zeta_{16}^{5} - 2\zeta_{16}^{3} + 2\zeta_{16} \) Copy content Toggle raw display
\(\zeta_{16}\)\(=\) \( ( \beta_{7} + \beta_{6} + 2\beta_{4} ) / 8 \) Copy content Toggle raw display
\(\zeta_{16}^{2}\)\(=\) \( ( \beta_{5} + 2\beta_{3} ) / 4 \) Copy content Toggle raw display
\(\zeta_{16}^{3}\)\(=\) \( ( -\beta_{7} + \beta_{6} + 2\beta_{2} ) / 8 \) Copy content Toggle raw display
\(\zeta_{16}^{4}\)\(=\) \( ( \beta_1 ) / 4 \) Copy content Toggle raw display
\(\zeta_{16}^{5}\)\(=\) \( ( \beta_{7} - \beta_{6} + 2\beta_{2} ) / 8 \) Copy content Toggle raw display
\(\zeta_{16}^{6}\)\(=\) \( ( -\beta_{5} + 2\beta_{3} ) / 4 \) Copy content Toggle raw display
\(\zeta_{16}^{7}\)\(=\) \( ( -\beta_{7} - \beta_{6} + 2\beta_{4} ) / 8 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5760\mathbb{Z}\right)^\times\).

\(n\) \(641\) \(901\) \(2431\) \(3457\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4031.1
0.382683 0.923880i
0.923880 0.382683i
−0.382683 0.923880i
−0.923880 0.382683i
−0.923880 + 0.382683i
−0.382683 + 0.923880i
0.923880 + 0.382683i
0.382683 + 0.923880i
0 0 0 −1.00000 0 5.10973i 0 0 0
4031.2 0 0 0 −1.00000 0 2.94495i 0 0 0
4031.3 0 0 0 −1.00000 0 2.28130i 0 0 0
4031.4 0 0 0 −1.00000 0 0.116520i 0 0 0
4031.5 0 0 0 −1.00000 0 0.116520i 0 0 0
4031.6 0 0 0 −1.00000 0 2.28130i 0 0 0
4031.7 0 0 0 −1.00000 0 2.94495i 0 0 0
4031.8 0 0 0 −1.00000 0 5.10973i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 4031.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5760.2.b.i 8
3.b odd 2 1 5760.2.b.l yes 8
4.b odd 2 1 5760.2.b.k yes 8
8.b even 2 1 5760.2.b.n yes 8
8.d odd 2 1 5760.2.b.l yes 8
12.b even 2 1 5760.2.b.n yes 8
24.f even 2 1 inner 5760.2.b.i 8
24.h odd 2 1 5760.2.b.k yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5760.2.b.i 8 1.a even 1 1 trivial
5760.2.b.i 8 24.f even 2 1 inner
5760.2.b.k yes 8 4.b odd 2 1
5760.2.b.k yes 8 24.h odd 2 1
5760.2.b.l yes 8 3.b odd 2 1
5760.2.b.l yes 8 8.d odd 2 1
5760.2.b.n yes 8 8.b even 2 1
5760.2.b.n yes 8 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5760, [\chi])\):

\( T_{7}^{8} + 40T_{7}^{6} + 408T_{7}^{4} + 1184T_{7}^{2} + 16 \) Copy content Toggle raw display
\( T_{19}^{2} + 4T_{19} - 4 \) Copy content Toggle raw display
\( T_{23}^{4} - 48T_{23}^{2} + 128T_{23} - 64 \) Copy content Toggle raw display
\( T_{29}^{4} + 8T_{29}^{3} - 40T_{29}^{2} - 224T_{29} + 272 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T + 1)^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + 40 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$11$ \( T^{8} + 40 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$13$ \( T^{8} + 72 T^{6} + \cdots + 4624 \) Copy content Toggle raw display
$17$ \( (T^{4} + 32 T^{2} + 128)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 4 T - 4)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} - 48 T^{2} + \cdots - 64)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 8 T^{3} + \cdots + 272)^{2} \) Copy content Toggle raw display
$31$ \( T^{8} + 128 T^{6} + \cdots + 16384 \) Copy content Toggle raw display
$37$ \( T^{8} + 136 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$41$ \( T^{8} + 200 T^{6} + \cdots + 913936 \) Copy content Toggle raw display
$43$ \( (T^{4} - 64 T^{2} + 512)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} - 8 T^{3} + \cdots + 272)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 64 T^{2} + 512)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + 296 T^{6} + \cdots + 28858384 \) Copy content Toggle raw display
$61$ \( (T^{4} + 48 T^{2} + 64)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + 16 T^{3} + \cdots - 256)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} - 128 T^{2} + \cdots - 512)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 4 T - 28)^{4} \) Copy content Toggle raw display
$79$ \( T^{8} + 256 T^{6} + \cdots + 4734976 \) Copy content Toggle raw display
$83$ \( T^{8} + 416 T^{6} + \cdots + 1183744 \) Copy content Toggle raw display
$89$ \( T^{8} + 264 T^{6} + \cdots + 15376 \) Copy content Toggle raw display
$97$ \( (T^{4} - 8 T^{3} + \cdots + 13328)^{2} \) Copy content Toggle raw display
show more
show less