Properties

Label 2-585-1.1-c5-0-34
Degree $2$
Conductor $585$
Sign $1$
Analytic cond. $93.8245$
Root an. cond. $9.68630$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.88·2-s + 2.58·4-s − 25·5-s + 111.·7-s + 172.·8-s + 147.·10-s + 268.·11-s + 169·13-s − 658.·14-s − 1.10e3·16-s + 866.·17-s + 1.92e3·19-s − 64.7·20-s − 1.57e3·22-s + 3.45e3·23-s + 625·25-s − 993.·26-s + 289.·28-s + 4.51e3·29-s + 3.09e3·31-s + 935.·32-s − 5.09e3·34-s − 2.79e3·35-s + 5.41e3·37-s − 1.13e4·38-s − 4.32e3·40-s + 1.70e4·41-s + ⋯
L(s)  = 1  − 1.03·2-s + 0.0809·4-s − 0.447·5-s + 0.863·7-s + 0.955·8-s + 0.464·10-s + 0.668·11-s + 0.277·13-s − 0.897·14-s − 1.07·16-s + 0.727·17-s + 1.22·19-s − 0.0361·20-s − 0.695·22-s + 1.36·23-s + 0.200·25-s − 0.288·26-s + 0.0698·28-s + 0.995·29-s + 0.578·31-s + 0.161·32-s − 0.755·34-s − 0.386·35-s + 0.649·37-s − 1.27·38-s − 0.427·40-s + 1.58·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(585\)    =    \(3^{2} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(93.8245\)
Root analytic conductor: \(9.68630\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 585,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.483770597\)
\(L(\frac12)\) \(\approx\) \(1.483770597\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 25T \)
13 \( 1 - 169T \)
good2 \( 1 + 5.88T + 32T^{2} \)
7 \( 1 - 111.T + 1.68e4T^{2} \)
11 \( 1 - 268.T + 1.61e5T^{2} \)
17 \( 1 - 866.T + 1.41e6T^{2} \)
19 \( 1 - 1.92e3T + 2.47e6T^{2} \)
23 \( 1 - 3.45e3T + 6.43e6T^{2} \)
29 \( 1 - 4.51e3T + 2.05e7T^{2} \)
31 \( 1 - 3.09e3T + 2.86e7T^{2} \)
37 \( 1 - 5.41e3T + 6.93e7T^{2} \)
41 \( 1 - 1.70e4T + 1.15e8T^{2} \)
43 \( 1 + 1.48e4T + 1.47e8T^{2} \)
47 \( 1 + 7.30e3T + 2.29e8T^{2} \)
53 \( 1 + 1.67e4T + 4.18e8T^{2} \)
59 \( 1 - 5.48e3T + 7.14e8T^{2} \)
61 \( 1 + 4.14e4T + 8.44e8T^{2} \)
67 \( 1 + 499.T + 1.35e9T^{2} \)
71 \( 1 - 2.09e4T + 1.80e9T^{2} \)
73 \( 1 + 2.41e4T + 2.07e9T^{2} \)
79 \( 1 - 3.74e4T + 3.07e9T^{2} \)
83 \( 1 - 8.37e4T + 3.93e9T^{2} \)
89 \( 1 + 6.16e4T + 5.58e9T^{2} \)
97 \( 1 + 2.54e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.714314989795697995245231795697, −9.068095099259430986270889717645, −8.132457853253654512599397868407, −7.65205715605135507405378517473, −6.62064709915268842346301324912, −5.17331170355229422871662369788, −4.38818590481494022743780114023, −3.10217745760828372436353898985, −1.41873260906253871151925968857, −0.815601707011801470873009025113, 0.815601707011801470873009025113, 1.41873260906253871151925968857, 3.10217745760828372436353898985, 4.38818590481494022743780114023, 5.17331170355229422871662369788, 6.62064709915268842346301324912, 7.65205715605135507405378517473, 8.132457853253654512599397868407, 9.068095099259430986270889717645, 9.714314989795697995245231795697

Graph of the $Z$-function along the critical line