Properties

Label 585.6.a.p
Level $585$
Weight $6$
Character orbit 585.a
Self dual yes
Analytic conductor $93.825$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,6,Mod(1,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 585.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(93.8245345906\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4 x^{8} - 205 x^{7} + 608 x^{6} + 13727 x^{5} - 27536 x^{4} - 346839 x^{3} + 433844 x^{2} + \cdots - 3899136 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{8}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} + (\beta_{2} - \beta_1 + 16) q^{4} - 25 q^{5} + (\beta_{6} - \beta_{2} - 3 \beta_1 - 16) q^{7} + (\beta_{6} - \beta_{5} - 12 \beta_1 + 33) q^{8} + (25 \beta_1 - 25) q^{10} + (\beta_{8} - \beta_{7} - \beta_{6} + \cdots + 53) q^{11}+ \cdots + (44 \beta_{8} + 18 \beta_{7} + \cdots + 12468) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 5 q^{2} + 139 q^{4} - 225 q^{5} - 153 q^{7} + 255 q^{8} - 125 q^{10} + 503 q^{11} + 1521 q^{13} + 1110 q^{14} + 763 q^{16} + 1897 q^{17} - 2412 q^{19} - 3475 q^{20} - 3776 q^{22} + 3901 q^{23} + 5625 q^{25}+ \cdots + 119225 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{9} - 4 x^{8} - 205 x^{7} + 608 x^{6} + 13727 x^{5} - 27536 x^{4} - 346839 x^{3} + 433844 x^{2} + \cdots - 3899136 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 47 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 59 \nu^{8} + 351 \nu^{7} + 10912 \nu^{6} - 55376 \nu^{5} - 601957 \nu^{4} + 2476749 \nu^{3} + \cdots + 113984 ) / 45280 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 587 \nu^{8} - 2859 \nu^{7} - 109064 \nu^{6} + 410960 \nu^{5} + 6097941 \nu^{4} - 15477745 \nu^{3} + \cdots + 182771520 ) / 271680 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 109 \nu^{8} - 1013 \nu^{7} - 17128 \nu^{6} + 162320 \nu^{5} + 669267 \nu^{4} - 7383375 \nu^{3} + \cdots - 132330560 ) / 90560 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 109 \nu^{8} - 1013 \nu^{7} - 17128 \nu^{6} + 162320 \nu^{5} + 669267 \nu^{4} - 7473935 \nu^{3} + \cdots - 141024320 ) / 90560 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 277 \nu^{8} + 1245 \nu^{7} + 53092 \nu^{6} - 173992 \nu^{5} - 3185691 \nu^{4} + 6123863 \nu^{3} + \cdots - 246852672 ) / 135840 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 185 \nu^{8} + 1657 \nu^{7} + 31376 \nu^{6} - 261664 \nu^{5} - 1521415 \nu^{4} + 11355611 \nu^{3} + \cdots + 109852736 ) / 90560 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 47 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{6} + \beta_{5} + 3\beta_{2} + 76\beta _1 + 45 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{8} - 3\beta_{7} - 2\beta_{6} + 4\beta_{5} - 3\beta_{4} + 117\beta_{2} + 172\beta _1 + 3583 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 9 \beta_{8} - 11 \beta_{7} - 143 \beta_{6} + 155 \beta_{5} - 17 \beta_{4} - 14 \beta_{3} + 503 \beta_{2} + \cdots + 8013 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 206 \beta_{8} - 498 \beta_{7} - 450 \beta_{6} + 850 \beta_{5} - 486 \beta_{4} + 20 \beta_{3} + \cdots + 328425 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 1980 \beta_{8} - 2308 \beta_{7} - 17153 \beta_{6} + 19777 \beta_{5} - 3196 \beta_{4} - 2368 \beta_{3} + \cdots + 1138793 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 31229 \beta_{8} - 64903 \beta_{7} - 72630 \beta_{6} + 130552 \beta_{5} - 62335 \beta_{4} + \cdots + 33126463 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
10.9498
7.93845
6.88132
2.31435
1.92674
−4.49910
−4.69326
−7.19157
−9.62674
−9.94981 0 66.9988 −25.0000 0 −113.847 −348.231 0 248.745
1.2 −6.93845 0 16.1421 −25.0000 0 −138.927 110.029 0 173.461
1.3 −5.88132 0 2.58998 −25.0000 0 111.916 172.970 0 147.033
1.4 −1.31435 0 −30.2725 −25.0000 0 80.6033 81.8477 0 32.8587
1.5 −0.926735 0 −31.1412 −25.0000 0 −27.0415 58.5151 0 23.1684
1.6 5.49910 0 −1.75989 −25.0000 0 −180.806 −185.649 0 −137.478
1.7 5.69326 0 0.413187 −25.0000 0 161.755 −179.832 0 −142.331
1.8 8.19157 0 35.1018 −25.0000 0 −132.038 25.4090 0 −204.789
1.9 10.6267 0 80.9276 −25.0000 0 85.3847 519.941 0 −265.669
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.9
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 585.6.a.p yes 9
3.b odd 2 1 585.6.a.o 9
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
585.6.a.o 9 3.b odd 2 1
585.6.a.p yes 9 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{9} - 5 T_{2}^{8} - 201 T_{2}^{7} + 855 T_{2}^{6} + 12972 T_{2}^{5} - 42890 T_{2}^{4} + \cdots + 1347840 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(585))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{9} - 5 T^{8} + \cdots + 1347840 \) Copy content Toggle raw display
$3$ \( T^{9} \) Copy content Toggle raw display
$5$ \( (T + 25)^{9} \) Copy content Toggle raw display
$7$ \( T^{9} + \cdots + 12\!\cdots\!04 \) Copy content Toggle raw display
$11$ \( T^{9} + \cdots + 32\!\cdots\!76 \) Copy content Toggle raw display
$13$ \( (T - 169)^{9} \) Copy content Toggle raw display
$17$ \( T^{9} + \cdots - 23\!\cdots\!44 \) Copy content Toggle raw display
$19$ \( T^{9} + \cdots - 22\!\cdots\!64 \) Copy content Toggle raw display
$23$ \( T^{9} + \cdots - 10\!\cdots\!32 \) Copy content Toggle raw display
$29$ \( T^{9} + \cdots - 58\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{9} + \cdots + 36\!\cdots\!72 \) Copy content Toggle raw display
$37$ \( T^{9} + \cdots - 11\!\cdots\!04 \) Copy content Toggle raw display
$41$ \( T^{9} + \cdots + 79\!\cdots\!36 \) Copy content Toggle raw display
$43$ \( T^{9} + \cdots - 99\!\cdots\!12 \) Copy content Toggle raw display
$47$ \( T^{9} + \cdots + 18\!\cdots\!28 \) Copy content Toggle raw display
$53$ \( T^{9} + \cdots + 29\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{9} + \cdots + 78\!\cdots\!84 \) Copy content Toggle raw display
$61$ \( T^{9} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{9} + \cdots + 20\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{9} + \cdots + 60\!\cdots\!48 \) Copy content Toggle raw display
$73$ \( T^{9} + \cdots - 69\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{9} + \cdots + 73\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{9} + \cdots - 41\!\cdots\!60 \) Copy content Toggle raw display
$89$ \( T^{9} + \cdots - 33\!\cdots\!60 \) Copy content Toggle raw display
$97$ \( T^{9} + \cdots - 73\!\cdots\!00 \) Copy content Toggle raw display
show more
show less