L(s) = 1 | + 2-s + 4-s + 4.38·7-s + 8-s − 2·11-s − 13-s + 4.38·14-s + 16-s + 5.86·17-s − 0.973·19-s − 2·22-s + 7.79·23-s − 26-s + 4.38·28-s − 0.973·29-s − 1.79·31-s + 32-s + 5.86·34-s + 0.591·37-s − 0.973·38-s − 4.81·41-s − 4.68·43-s − 2·44-s + 7.79·46-s + 0.381·47-s + 12.1·49-s − 52-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s + 1.65·7-s + 0.353·8-s − 0.603·11-s − 0.277·13-s + 1.17·14-s + 0.250·16-s + 1.42·17-s − 0.223·19-s − 0.426·22-s + 1.62·23-s − 0.196·26-s + 0.828·28-s − 0.180·29-s − 0.321·31-s + 0.176·32-s + 1.00·34-s + 0.0972·37-s − 0.157·38-s − 0.752·41-s − 0.714·43-s − 0.301·44-s + 1.14·46-s + 0.0556·47-s + 1.74·49-s − 0.138·52-s + ⋯ |
Λ(s)=(=(5850s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5850s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.175495400 |
L(21) |
≈ |
4.175495400 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 5 | 1 |
| 13 | 1+T |
good | 7 | 1−4.38T+7T2 |
| 11 | 1+2T+11T2 |
| 17 | 1−5.86T+17T2 |
| 19 | 1+0.973T+19T2 |
| 23 | 1−7.79T+23T2 |
| 29 | 1+0.973T+29T2 |
| 31 | 1+1.79T+31T2 |
| 37 | 1−0.591T+37T2 |
| 41 | 1+4.81T+41T2 |
| 43 | 1+4.68T+43T2 |
| 47 | 1−0.381T+47T2 |
| 53 | 1−7.79T+53T2 |
| 59 | 1−0.973T+59T2 |
| 61 | 1+0.817T+61T2 |
| 67 | 1+1.79T+67T2 |
| 71 | 1−3.92T+71T2 |
| 73 | 1−6T+73T2 |
| 79 | 1−10.9T+79T2 |
| 83 | 1+6.97T+83T2 |
| 89 | 1+0.973T+89T2 |
| 97 | 1−18.6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.981267485804404022571294126993, −7.42566328450048093725462329928, −6.74541771013221189530218980370, −5.57819601364454800205672567273, −5.21039040137060604947210738225, −4.66900664890338250431758766849, −3.71122162849884799228237559385, −2.85285923543981849146668516826, −1.93158311479120798124281007810, −1.04440546448079732842979602719,
1.04440546448079732842979602719, 1.93158311479120798124281007810, 2.85285923543981849146668516826, 3.71122162849884799228237559385, 4.66900664890338250431758766849, 5.21039040137060604947210738225, 5.57819601364454800205672567273, 6.74541771013221189530218980370, 7.42566328450048093725462329928, 7.981267485804404022571294126993