Properties

Label 2-5850-1.1-c1-0-44
Degree $2$
Conductor $5850$
Sign $1$
Analytic cond. $46.7124$
Root an. cond. $6.83465$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 4.38·7-s + 8-s − 2·11-s − 13-s + 4.38·14-s + 16-s + 5.86·17-s − 0.973·19-s − 2·22-s + 7.79·23-s − 26-s + 4.38·28-s − 0.973·29-s − 1.79·31-s + 32-s + 5.86·34-s + 0.591·37-s − 0.973·38-s − 4.81·41-s − 4.68·43-s − 2·44-s + 7.79·46-s + 0.381·47-s + 12.1·49-s − 52-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 1.65·7-s + 0.353·8-s − 0.603·11-s − 0.277·13-s + 1.17·14-s + 0.250·16-s + 1.42·17-s − 0.223·19-s − 0.426·22-s + 1.62·23-s − 0.196·26-s + 0.828·28-s − 0.180·29-s − 0.321·31-s + 0.176·32-s + 1.00·34-s + 0.0972·37-s − 0.157·38-s − 0.752·41-s − 0.714·43-s − 0.301·44-s + 1.14·46-s + 0.0556·47-s + 1.74·49-s − 0.138·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5850\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(46.7124\)
Root analytic conductor: \(6.83465\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5850,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.175495400\)
\(L(\frac12)\) \(\approx\) \(4.175495400\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 - 4.38T + 7T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
17 \( 1 - 5.86T + 17T^{2} \)
19 \( 1 + 0.973T + 19T^{2} \)
23 \( 1 - 7.79T + 23T^{2} \)
29 \( 1 + 0.973T + 29T^{2} \)
31 \( 1 + 1.79T + 31T^{2} \)
37 \( 1 - 0.591T + 37T^{2} \)
41 \( 1 + 4.81T + 41T^{2} \)
43 \( 1 + 4.68T + 43T^{2} \)
47 \( 1 - 0.381T + 47T^{2} \)
53 \( 1 - 7.79T + 53T^{2} \)
59 \( 1 - 0.973T + 59T^{2} \)
61 \( 1 + 0.817T + 61T^{2} \)
67 \( 1 + 1.79T + 67T^{2} \)
71 \( 1 - 3.92T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 - 10.9T + 79T^{2} \)
83 \( 1 + 6.97T + 83T^{2} \)
89 \( 1 + 0.973T + 89T^{2} \)
97 \( 1 - 18.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.981267485804404022571294126993, −7.42566328450048093725462329928, −6.74541771013221189530218980370, −5.57819601364454800205672567273, −5.21039040137060604947210738225, −4.66900664890338250431758766849, −3.71122162849884799228237559385, −2.85285923543981849146668516826, −1.93158311479120798124281007810, −1.04440546448079732842979602719, 1.04440546448079732842979602719, 1.93158311479120798124281007810, 2.85285923543981849146668516826, 3.71122162849884799228237559385, 4.66900664890338250431758766849, 5.21039040137060604947210738225, 5.57819601364454800205672567273, 6.74541771013221189530218980370, 7.42566328450048093725462329928, 7.981267485804404022571294126993

Graph of the $Z$-function along the critical line