Properties

Label 5850.2.a.cs
Level $5850$
Weight $2$
Character orbit 5850.a
Self dual yes
Analytic conductor $46.712$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5850,2,Mod(1,5850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5850, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5850.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5850 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5850.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.7124851824\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.940.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 7x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + (\beta_{2} + \beta_1 + 1) q^{7} + q^{8} - 2 q^{11} - q^{13} + (\beta_{2} + \beta_1 + 1) q^{14} + q^{16} + (2 \beta_{2} + \beta_1 + 2) q^{17} - 2 \beta_{2} q^{19} - 2 q^{22} + (2 \beta_1 + 2) q^{23}+ \cdots + ( - \beta_{2} + 3 \beta_1 + 4) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} + 2 q^{7} + 3 q^{8} - 6 q^{11} - 3 q^{13} + 2 q^{14} + 3 q^{16} + 4 q^{17} + 2 q^{19} - 6 q^{22} + 6 q^{23} - 3 q^{26} + 2 q^{28} + 2 q^{29} + 12 q^{31} + 3 q^{32} + 4 q^{34} + 8 q^{37}+ \cdots + 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 7x - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 5 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.602705
−2.29240
2.89511
1.00000 0 1.00000 0 0 −3.63675 1.00000 0 0
1.2 1.00000 0 1.00000 0 0 1.25511 1.00000 0 0
1.3 1.00000 0 1.00000 0 0 4.38164 1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5850.2.a.cs 3
3.b odd 2 1 650.2.a.n 3
5.b even 2 1 5850.2.a.cp 3
5.c odd 4 2 1170.2.e.f 6
12.b even 2 1 5200.2.a.ce 3
15.d odd 2 1 650.2.a.o 3
15.e even 4 2 130.2.b.a 6
39.d odd 2 1 8450.2.a.cc 3
60.h even 2 1 5200.2.a.cf 3
60.l odd 4 2 1040.2.d.b 6
195.e odd 2 1 8450.2.a.bs 3
195.j odd 4 2 1690.2.c.a 6
195.s even 4 2 1690.2.b.a 6
195.u odd 4 2 1690.2.c.d 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.b.a 6 15.e even 4 2
650.2.a.n 3 3.b odd 2 1
650.2.a.o 3 15.d odd 2 1
1040.2.d.b 6 60.l odd 4 2
1170.2.e.f 6 5.c odd 4 2
1690.2.b.a 6 195.s even 4 2
1690.2.c.a 6 195.j odd 4 2
1690.2.c.d 6 195.u odd 4 2
5200.2.a.ce 3 12.b even 2 1
5200.2.a.cf 3 60.h even 2 1
5850.2.a.cp 3 5.b even 2 1
5850.2.a.cs 3 1.a even 1 1 trivial
8450.2.a.bs 3 195.e odd 2 1
8450.2.a.cc 3 39.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5850))\):

\( T_{7}^{3} - 2T_{7}^{2} - 15T_{7} + 20 \) Copy content Toggle raw display
\( T_{11} + 2 \) Copy content Toggle raw display
\( T_{17}^{3} - 4T_{17}^{2} - 43T_{17} + 188 \) Copy content Toggle raw display
\( T_{23}^{3} - 6T_{23}^{2} - 16T_{23} + 16 \) Copy content Toggle raw display
\( T_{31}^{3} - 12T_{31}^{2} + 20T_{31} + 80 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 2 T^{2} + \cdots + 20 \) Copy content Toggle raw display
$11$ \( (T + 2)^{3} \) Copy content Toggle raw display
$13$ \( (T + 1)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} - 4 T^{2} + \cdots + 188 \) Copy content Toggle raw display
$19$ \( T^{3} - 2 T^{2} + \cdots - 40 \) Copy content Toggle raw display
$23$ \( T^{3} - 6 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$29$ \( T^{3} - 2 T^{2} + \cdots - 40 \) Copy content Toggle raw display
$31$ \( T^{3} - 12 T^{2} + \cdots + 80 \) Copy content Toggle raw display
$37$ \( T^{3} - 8T^{2} + T + 2 \) Copy content Toggle raw display
$41$ \( T^{3} + 2 T^{2} + \cdots - 320 \) Copy content Toggle raw display
$43$ \( T^{3} - 12 T^{2} + \cdots + 296 \) Copy content Toggle raw display
$47$ \( T^{3} + 10 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$53$ \( T^{3} - 6 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$59$ \( T^{3} + 2 T^{2} + \cdots + 40 \) Copy content Toggle raw display
$61$ \( T^{3} - 10 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$67$ \( T^{3} - 12 T^{2} + \cdots + 80 \) Copy content Toggle raw display
$71$ \( T^{3} - 8 T^{2} + \cdots + 200 \) Copy content Toggle raw display
$73$ \( (T - 6)^{3} \) Copy content Toggle raw display
$79$ \( T^{3} - 28 T^{2} + \cdots - 320 \) Copy content Toggle raw display
$83$ \( T^{3} + 16 T^{2} + \cdots - 160 \) Copy content Toggle raw display
$89$ \( T^{3} - 2 T^{2} + \cdots - 40 \) Copy content Toggle raw display
$97$ \( T^{3} - 26 T^{2} + \cdots + 1592 \) Copy content Toggle raw display
show more
show less