Properties

Label 1690.2.c.d
Level $1690$
Weight $2$
Character orbit 1690.c
Analytic conductor $13.495$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1690,2,Mod(1689,1690)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1690, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1690.1689");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.3534400.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 3x^{4} + 16x^{3} + x^{2} - 12x + 40 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + (\beta_{3} - \beta_{2}) q^{3} + q^{4} + (\beta_{2} + 1) q^{5} + (\beta_{3} - \beta_{2}) q^{6} + (\beta_{4} + \beta_1) q^{7} + q^{8} + ( - \beta_{4} - \beta_1 - 1) q^{9} + (\beta_{2} + 1) q^{10}+ \cdots + ( - \beta_{5} + \beta_{4} + \cdots - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} + 6 q^{4} + 4 q^{5} + 4 q^{7} + 6 q^{8} - 10 q^{9} + 4 q^{10} + 4 q^{14} + 14 q^{15} + 6 q^{16} - 10 q^{18} + 4 q^{20} + 16 q^{25} + 4 q^{28} + 4 q^{29} + 14 q^{30} + 6 q^{32} - 6 q^{35} - 10 q^{36}+ \cdots + 26 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 3x^{4} + 16x^{3} + x^{2} - 12x + 40 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -9\nu^{5} - 65\nu^{4} + 367\nu^{3} - 270\nu^{2} - 719\nu + 1240 ) / 445 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -11\nu^{5} - 30\nu^{4} + 53\nu^{3} + 115\nu^{2} - 681\nu - 660 ) / 445 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 17\nu^{5} - 75\nu^{4} - \nu^{3} + 510\nu^{2} - 323\nu - 760 ) / 445 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -19\nu^{5} + 110\nu^{4} - 313\nu^{3} - 125\nu^{2} + 1251\nu - 1140 ) / 445 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -9\nu^{5} + 24\nu^{4} + 11\nu^{3} - 92\nu^{2} - 7\nu - 6 ) / 89 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} + \beta_{3} - \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + 2\beta_{3} - \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 4\beta_{5} - \beta_{4} + 6\beta_{3} - 7\beta_{2} + 2\beta _1 - 8 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 7\beta_{5} - 6\beta_{4} + 4\beta_{3} - 8\beta_{2} - 5\beta _1 - 6 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 2\beta_{5} - 34\beta_{4} - 13\beta_{3} - 30\beta_{2} - 25\beta _1 - 84 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1689.1
2.19082 1.44755i
0.627553 1.14620i
−1.81837 0.301352i
−1.81837 + 0.301352i
0.627553 + 1.14620i
2.19082 + 1.44755i
1.00000 2.89511i 1.00000 1.70429 + 1.44755i 2.89511i 4.38164 1.00000 −5.38164 1.70429 + 1.44755i
1689.2 1.00000 2.29240i 1.00000 −1.91995 + 1.14620i 2.29240i 1.25511 1.00000 −2.25511 −1.91995 + 1.14620i
1689.3 1.00000 0.602705i 1.00000 2.21567 + 0.301352i 0.602705i −3.63675 1.00000 2.63675 2.21567 + 0.301352i
1689.4 1.00000 0.602705i 1.00000 2.21567 0.301352i 0.602705i −3.63675 1.00000 2.63675 2.21567 0.301352i
1689.5 1.00000 2.29240i 1.00000 −1.91995 1.14620i 2.29240i 1.25511 1.00000 −2.25511 −1.91995 1.14620i
1689.6 1.00000 2.89511i 1.00000 1.70429 1.44755i 2.89511i 4.38164 1.00000 −5.38164 1.70429 1.44755i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1689.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1690.2.c.d 6
5.b even 2 1 1690.2.c.a 6
13.b even 2 1 1690.2.c.a 6
13.d odd 4 1 130.2.b.a 6
13.d odd 4 1 1690.2.b.a 6
39.f even 4 1 1170.2.e.f 6
52.f even 4 1 1040.2.d.b 6
65.d even 2 1 inner 1690.2.c.d 6
65.f even 4 1 650.2.a.n 3
65.f even 4 1 8450.2.a.bs 3
65.g odd 4 1 130.2.b.a 6
65.g odd 4 1 1690.2.b.a 6
65.k even 4 1 650.2.a.o 3
65.k even 4 1 8450.2.a.cc 3
195.j odd 4 1 5850.2.a.cp 3
195.n even 4 1 1170.2.e.f 6
195.u odd 4 1 5850.2.a.cs 3
260.l odd 4 1 5200.2.a.ce 3
260.s odd 4 1 5200.2.a.cf 3
260.u even 4 1 1040.2.d.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.b.a 6 13.d odd 4 1
130.2.b.a 6 65.g odd 4 1
650.2.a.n 3 65.f even 4 1
650.2.a.o 3 65.k even 4 1
1040.2.d.b 6 52.f even 4 1
1040.2.d.b 6 260.u even 4 1
1170.2.e.f 6 39.f even 4 1
1170.2.e.f 6 195.n even 4 1
1690.2.b.a 6 13.d odd 4 1
1690.2.b.a 6 65.g odd 4 1
1690.2.c.a 6 5.b even 2 1
1690.2.c.a 6 13.b even 2 1
1690.2.c.d 6 1.a even 1 1 trivial
1690.2.c.d 6 65.d even 2 1 inner
5200.2.a.ce 3 260.l odd 4 1
5200.2.a.cf 3 260.s odd 4 1
5850.2.a.cp 3 195.j odd 4 1
5850.2.a.cs 3 195.u odd 4 1
8450.2.a.bs 3 65.f even 4 1
8450.2.a.cc 3 65.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1690, [\chi])\):

\( T_{3}^{6} + 14T_{3}^{4} + 49T_{3}^{2} + 16 \) Copy content Toggle raw display
\( T_{7}^{3} - 2T_{7}^{2} - 15T_{7} + 20 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 14 T^{4} + \cdots + 16 \) Copy content Toggle raw display
$5$ \( T^{6} - 4 T^{5} + \cdots + 125 \) Copy content Toggle raw display
$7$ \( (T^{3} - 2 T^{2} - 15 T + 20)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 4)^{3} \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + 102 T^{4} + \cdots + 35344 \) Copy content Toggle raw display
$19$ \( T^{6} + 92 T^{4} + \cdots + 1600 \) Copy content Toggle raw display
$23$ \( T^{6} + 68 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$29$ \( (T^{3} - 2 T^{2} - 44 T - 40)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + 104 T^{4} + \cdots + 6400 \) Copy content Toggle raw display
$37$ \( (T^{3} - 8 T^{2} + T + 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + 164 T^{4} + \cdots + 102400 \) Copy content Toggle raw display
$43$ \( T^{6} + 174 T^{4} + \cdots + 87616 \) Copy content Toggle raw display
$47$ \( (T^{3} - 10 T^{2} + 17 T + 8)^{2} \) Copy content Toggle raw display
$53$ \( T^{6} + 68 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$59$ \( T^{6} + 92 T^{4} + \cdots + 1600 \) Copy content Toggle raw display
$61$ \( (T^{3} - 10 T^{2} + \cdots - 32)^{2} \) Copy content Toggle raw display
$67$ \( (T^{3} + 12 T^{2} + \cdots - 80)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} + 134 T^{4} + \cdots + 40000 \) Copy content Toggle raw display
$73$ \( (T + 6)^{6} \) Copy content Toggle raw display
$79$ \( (T^{3} + 28 T^{2} + \cdots + 320)^{2} \) Copy content Toggle raw display
$83$ \( (T^{3} - 16 T^{2} + \cdots + 160)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} + 92 T^{4} + \cdots + 1600 \) Copy content Toggle raw display
$97$ \( (T^{3} + 26 T^{2} + \cdots - 1592)^{2} \) Copy content Toggle raw display
show more
show less