Properties

Label 1690.2.c.d
Level 16901690
Weight 22
Character orbit 1690.c
Analytic conductor 13.49513.495
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1690,2,Mod(1689,1690)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1690, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1690.1689");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1690=25132 1690 = 2 \cdot 5 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1690.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 13.494717941613.4947179416
Analytic rank: 00
Dimension: 66
Coefficient field: 6.0.3534400.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x62x53x4+16x3+x212x+40 x^{6} - 2x^{5} - 3x^{4} + 16x^{3} + x^{2} - 12x + 40 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 23 2^{3}
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+q2+(β3β2)q3+q4+(β2+1)q5+(β3β2)q6+(β4+β1)q7+q8+(β4β11)q9+(β2+1)q10++(β5+β4+β1)q99+O(q100) q + q^{2} + (\beta_{3} - \beta_{2}) q^{3} + q^{4} + (\beta_{2} + 1) q^{5} + (\beta_{3} - \beta_{2}) q^{6} + (\beta_{4} + \beta_1) q^{7} + q^{8} + ( - \beta_{4} - \beta_1 - 1) q^{9} + (\beta_{2} + 1) q^{10}+ \cdots + ( - \beta_{5} + \beta_{4} + \cdots - \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+6q2+6q4+4q5+4q7+6q810q9+4q10+4q14+14q15+6q1610q18+4q20+16q25+4q28+4q29+14q30+6q326q3510q36++26q98+O(q100) 6 q + 6 q^{2} + 6 q^{4} + 4 q^{5} + 4 q^{7} + 6 q^{8} - 10 q^{9} + 4 q^{10} + 4 q^{14} + 14 q^{15} + 6 q^{16} - 10 q^{18} + 4 q^{20} + 16 q^{25} + 4 q^{28} + 4 q^{29} + 14 q^{30} + 6 q^{32} - 6 q^{35} - 10 q^{36}+ \cdots + 26 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x62x53x4+16x3+x212x+40 x^{6} - 2x^{5} - 3x^{4} + 16x^{3} + x^{2} - 12x + 40 : Copy content Toggle raw display

β1\beta_{1}== (9ν565ν4+367ν3270ν2719ν+1240)/445 ( -9\nu^{5} - 65\nu^{4} + 367\nu^{3} - 270\nu^{2} - 719\nu + 1240 ) / 445 Copy content Toggle raw display
β2\beta_{2}== (11ν530ν4+53ν3+115ν2681ν660)/445 ( -11\nu^{5} - 30\nu^{4} + 53\nu^{3} + 115\nu^{2} - 681\nu - 660 ) / 445 Copy content Toggle raw display
β3\beta_{3}== (17ν575ν4ν3+510ν2323ν760)/445 ( 17\nu^{5} - 75\nu^{4} - \nu^{3} + 510\nu^{2} - 323\nu - 760 ) / 445 Copy content Toggle raw display
β4\beta_{4}== (19ν5+110ν4313ν3125ν2+1251ν1140)/445 ( -19\nu^{5} + 110\nu^{4} - 313\nu^{3} - 125\nu^{2} + 1251\nu - 1140 ) / 445 Copy content Toggle raw display
β5\beta_{5}== (9ν5+24ν4+11ν392ν27ν6)/89 ( -9\nu^{5} + 24\nu^{4} + 11\nu^{3} - 92\nu^{2} - 7\nu - 6 ) / 89 Copy content Toggle raw display
ν\nu== (β4+β3β2+β1)/2 ( \beta_{4} + \beta_{3} - \beta_{2} + \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== β5+2β3β2+2 \beta_{5} + 2\beta_{3} - \beta_{2} + 2 Copy content Toggle raw display
ν3\nu^{3}== (4β5β4+6β37β2+2β18)/2 ( 4\beta_{5} - \beta_{4} + 6\beta_{3} - 7\beta_{2} + 2\beta _1 - 8 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== 7β56β4+4β38β25β16 7\beta_{5} - 6\beta_{4} + 4\beta_{3} - 8\beta_{2} - 5\beta _1 - 6 Copy content Toggle raw display
ν5\nu^{5}== (2β534β413β330β225β184)/2 ( 2\beta_{5} - 34\beta_{4} - 13\beta_{3} - 30\beta_{2} - 25\beta _1 - 84 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1690Z)×\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times.

nn 171171 677677
χ(n)\chi(n) 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1689.1
2.19082 1.44755i
0.627553 1.14620i
−1.81837 0.301352i
−1.81837 + 0.301352i
0.627553 + 1.14620i
2.19082 + 1.44755i
1.00000 2.89511i 1.00000 1.70429 + 1.44755i 2.89511i 4.38164 1.00000 −5.38164 1.70429 + 1.44755i
1689.2 1.00000 2.29240i 1.00000 −1.91995 + 1.14620i 2.29240i 1.25511 1.00000 −2.25511 −1.91995 + 1.14620i
1689.3 1.00000 0.602705i 1.00000 2.21567 + 0.301352i 0.602705i −3.63675 1.00000 2.63675 2.21567 + 0.301352i
1689.4 1.00000 0.602705i 1.00000 2.21567 0.301352i 0.602705i −3.63675 1.00000 2.63675 2.21567 0.301352i
1689.5 1.00000 2.29240i 1.00000 −1.91995 1.14620i 2.29240i 1.25511 1.00000 −2.25511 −1.91995 1.14620i
1689.6 1.00000 2.89511i 1.00000 1.70429 1.44755i 2.89511i 4.38164 1.00000 −5.38164 1.70429 1.44755i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1689.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1690.2.c.d 6
5.b even 2 1 1690.2.c.a 6
13.b even 2 1 1690.2.c.a 6
13.d odd 4 1 130.2.b.a 6
13.d odd 4 1 1690.2.b.a 6
39.f even 4 1 1170.2.e.f 6
52.f even 4 1 1040.2.d.b 6
65.d even 2 1 inner 1690.2.c.d 6
65.f even 4 1 650.2.a.n 3
65.f even 4 1 8450.2.a.bs 3
65.g odd 4 1 130.2.b.a 6
65.g odd 4 1 1690.2.b.a 6
65.k even 4 1 650.2.a.o 3
65.k even 4 1 8450.2.a.cc 3
195.j odd 4 1 5850.2.a.cp 3
195.n even 4 1 1170.2.e.f 6
195.u odd 4 1 5850.2.a.cs 3
260.l odd 4 1 5200.2.a.ce 3
260.s odd 4 1 5200.2.a.cf 3
260.u even 4 1 1040.2.d.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.b.a 6 13.d odd 4 1
130.2.b.a 6 65.g odd 4 1
650.2.a.n 3 65.f even 4 1
650.2.a.o 3 65.k even 4 1
1040.2.d.b 6 52.f even 4 1
1040.2.d.b 6 260.u even 4 1
1170.2.e.f 6 39.f even 4 1
1170.2.e.f 6 195.n even 4 1
1690.2.b.a 6 13.d odd 4 1
1690.2.b.a 6 65.g odd 4 1
1690.2.c.a 6 5.b even 2 1
1690.2.c.a 6 13.b even 2 1
1690.2.c.d 6 1.a even 1 1 trivial
1690.2.c.d 6 65.d even 2 1 inner
5200.2.a.ce 3 260.l odd 4 1
5200.2.a.cf 3 260.s odd 4 1
5850.2.a.cp 3 195.j odd 4 1
5850.2.a.cs 3 195.u odd 4 1
8450.2.a.bs 3 65.f even 4 1
8450.2.a.cc 3 65.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1690,[χ])S_{2}^{\mathrm{new}}(1690, [\chi]):

T36+14T34+49T32+16 T_{3}^{6} + 14T_{3}^{4} + 49T_{3}^{2} + 16 Copy content Toggle raw display
T732T7215T7+20 T_{7}^{3} - 2T_{7}^{2} - 15T_{7} + 20 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T1)6 (T - 1)^{6} Copy content Toggle raw display
33 T6+14T4++16 T^{6} + 14 T^{4} + \cdots + 16 Copy content Toggle raw display
55 T64T5++125 T^{6} - 4 T^{5} + \cdots + 125 Copy content Toggle raw display
77 (T32T215T+20)2 (T^{3} - 2 T^{2} - 15 T + 20)^{2} Copy content Toggle raw display
1111 (T2+4)3 (T^{2} + 4)^{3} Copy content Toggle raw display
1313 T6 T^{6} Copy content Toggle raw display
1717 T6+102T4++35344 T^{6} + 102 T^{4} + \cdots + 35344 Copy content Toggle raw display
1919 T6+92T4++1600 T^{6} + 92 T^{4} + \cdots + 1600 Copy content Toggle raw display
2323 T6+68T4++256 T^{6} + 68 T^{4} + \cdots + 256 Copy content Toggle raw display
2929 (T32T244T40)2 (T^{3} - 2 T^{2} - 44 T - 40)^{2} Copy content Toggle raw display
3131 T6+104T4++6400 T^{6} + 104 T^{4} + \cdots + 6400 Copy content Toggle raw display
3737 (T38T2+T+2)2 (T^{3} - 8 T^{2} + T + 2)^{2} Copy content Toggle raw display
4141 T6+164T4++102400 T^{6} + 164 T^{4} + \cdots + 102400 Copy content Toggle raw display
4343 T6+174T4++87616 T^{6} + 174 T^{4} + \cdots + 87616 Copy content Toggle raw display
4747 (T310T2+17T+8)2 (T^{3} - 10 T^{2} + 17 T + 8)^{2} Copy content Toggle raw display
5353 T6+68T4++256 T^{6} + 68 T^{4} + \cdots + 256 Copy content Toggle raw display
5959 T6+92T4++1600 T^{6} + 92 T^{4} + \cdots + 1600 Copy content Toggle raw display
6161 (T310T2+32)2 (T^{3} - 10 T^{2} + \cdots - 32)^{2} Copy content Toggle raw display
6767 (T3+12T2+80)2 (T^{3} + 12 T^{2} + \cdots - 80)^{2} Copy content Toggle raw display
7171 T6+134T4++40000 T^{6} + 134 T^{4} + \cdots + 40000 Copy content Toggle raw display
7373 (T+6)6 (T + 6)^{6} Copy content Toggle raw display
7979 (T3+28T2++320)2 (T^{3} + 28 T^{2} + \cdots + 320)^{2} Copy content Toggle raw display
8383 (T316T2++160)2 (T^{3} - 16 T^{2} + \cdots + 160)^{2} Copy content Toggle raw display
8989 T6+92T4++1600 T^{6} + 92 T^{4} + \cdots + 1600 Copy content Toggle raw display
9797 (T3+26T2+1592)2 (T^{3} + 26 T^{2} + \cdots - 1592)^{2} Copy content Toggle raw display
show more
show less