Properties

Label 650.2.a.o
Level $650$
Weight $2$
Character orbit 650.a
Self dual yes
Analytic conductor $5.190$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,2,Mod(1,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.940.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 7x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - \beta_1 q^{3} + q^{4} - \beta_1 q^{6} + ( - \beta_{2} - \beta_1 - 1) q^{7} + q^{8} + (\beta_{2} + \beta_1 + 2) q^{9} + 2 q^{11} - \beta_1 q^{12} + q^{13} + ( - \beta_{2} - \beta_1 - 1) q^{14}+ \cdots + (2 \beta_{2} + 2 \beta_1 + 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} - 2 q^{7} + 3 q^{8} + 5 q^{9} + 6 q^{11} + 3 q^{13} - 2 q^{14} + 3 q^{16} + 4 q^{17} + 5 q^{18} + 2 q^{19} + 12 q^{21} + 6 q^{22} + 6 q^{23} + 3 q^{26} - 12 q^{27} - 2 q^{28} - 2 q^{29}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 7x - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 5 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.89511
−0.602705
−2.29240
1.00000 −2.89511 1.00000 0 −2.89511 −4.38164 1.00000 5.38164 0
1.2 1.00000 0.602705 1.00000 0 0.602705 3.63675 1.00000 −2.63675 0
1.3 1.00000 2.29240 1.00000 0 2.29240 −1.25511 1.00000 2.25511 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.2.a.o 3
3.b odd 2 1 5850.2.a.cp 3
4.b odd 2 1 5200.2.a.cf 3
5.b even 2 1 650.2.a.n 3
5.c odd 4 2 130.2.b.a 6
13.b even 2 1 8450.2.a.bs 3
15.d odd 2 1 5850.2.a.cs 3
15.e even 4 2 1170.2.e.f 6
20.d odd 2 1 5200.2.a.ce 3
20.e even 4 2 1040.2.d.b 6
65.d even 2 1 8450.2.a.cc 3
65.f even 4 2 1690.2.c.a 6
65.h odd 4 2 1690.2.b.a 6
65.k even 4 2 1690.2.c.d 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.b.a 6 5.c odd 4 2
650.2.a.n 3 5.b even 2 1
650.2.a.o 3 1.a even 1 1 trivial
1040.2.d.b 6 20.e even 4 2
1170.2.e.f 6 15.e even 4 2
1690.2.b.a 6 65.h odd 4 2
1690.2.c.a 6 65.f even 4 2
1690.2.c.d 6 65.k even 4 2
5200.2.a.ce 3 20.d odd 2 1
5200.2.a.cf 3 4.b odd 2 1
5850.2.a.cp 3 3.b odd 2 1
5850.2.a.cs 3 15.d odd 2 1
8450.2.a.bs 3 13.b even 2 1
8450.2.a.cc 3 65.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(650))\):

\( T_{3}^{3} - 7T_{3} + 4 \) Copy content Toggle raw display
\( T_{7}^{3} + 2T_{7}^{2} - 15T_{7} - 20 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 7T + 4 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 2 T^{2} + \cdots - 20 \) Copy content Toggle raw display
$11$ \( (T - 2)^{3} \) Copy content Toggle raw display
$13$ \( (T - 1)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} - 4 T^{2} + \cdots + 188 \) Copy content Toggle raw display
$19$ \( T^{3} - 2 T^{2} + \cdots - 40 \) Copy content Toggle raw display
$23$ \( T^{3} - 6 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$29$ \( T^{3} + 2 T^{2} + \cdots + 40 \) Copy content Toggle raw display
$31$ \( T^{3} - 12 T^{2} + \cdots + 80 \) Copy content Toggle raw display
$37$ \( T^{3} + 8T^{2} + T - 2 \) Copy content Toggle raw display
$41$ \( T^{3} - 2 T^{2} + \cdots + 320 \) Copy content Toggle raw display
$43$ \( T^{3} + 12 T^{2} + \cdots - 296 \) Copy content Toggle raw display
$47$ \( T^{3} + 10 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$53$ \( T^{3} - 6 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$59$ \( T^{3} - 2 T^{2} + \cdots - 40 \) Copy content Toggle raw display
$61$ \( T^{3} - 10 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$67$ \( T^{3} + 12 T^{2} + \cdots - 80 \) Copy content Toggle raw display
$71$ \( T^{3} + 8 T^{2} + \cdots - 200 \) Copy content Toggle raw display
$73$ \( (T + 6)^{3} \) Copy content Toggle raw display
$79$ \( T^{3} - 28 T^{2} + \cdots - 320 \) Copy content Toggle raw display
$83$ \( T^{3} + 16 T^{2} + \cdots - 160 \) Copy content Toggle raw display
$89$ \( T^{3} + 2 T^{2} + \cdots + 40 \) Copy content Toggle raw display
$97$ \( T^{3} + 26 T^{2} + \cdots - 1592 \) Copy content Toggle raw display
show more
show less