L(s) = 1 | + 2-s + 2.29·3-s + 4-s + 2.29·6-s − 1.25·7-s + 8-s + 2.25·9-s + 2·11-s + 2.29·12-s + 13-s − 1.25·14-s + 16-s + 4.80·17-s + 2.25·18-s − 5.09·19-s − 2.87·21-s + 2·22-s − 2.58·23-s + 2.29·24-s + 26-s − 1.70·27-s − 1.25·28-s + 5.09·29-s + 8.58·31-s + 32-s + 4.58·33-s + 4.80·34-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.32·3-s + 0.5·4-s + 0.935·6-s − 0.474·7-s + 0.353·8-s + 0.751·9-s + 0.603·11-s + 0.661·12-s + 0.277·13-s − 0.335·14-s + 0.250·16-s + 1.16·17-s + 0.531·18-s − 1.16·19-s − 0.627·21-s + 0.426·22-s − 0.538·23-s + 0.467·24-s + 0.196·26-s − 0.328·27-s − 0.237·28-s + 0.946·29-s + 1.54·31-s + 0.176·32-s + 0.798·33-s + 0.823·34-s + ⋯ |
Λ(s)=(=(650s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(650s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.342916923 |
L(21) |
≈ |
3.342916923 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 5 | 1 |
| 13 | 1−T |
good | 3 | 1−2.29T+3T2 |
| 7 | 1+1.25T+7T2 |
| 11 | 1−2T+11T2 |
| 17 | 1−4.80T+17T2 |
| 19 | 1+5.09T+19T2 |
| 23 | 1+2.58T+23T2 |
| 29 | 1−5.09T+29T2 |
| 31 | 1−8.58T+31T2 |
| 37 | 1+7.83T+37T2 |
| 41 | 1+9.67T+41T2 |
| 43 | 1+10.8T+43T2 |
| 47 | 1+2.74T+47T2 |
| 53 | 1+2.58T+53T2 |
| 59 | 1+5.09T+59T2 |
| 61 | 1−13.6T+61T2 |
| 67 | 1+8.58T+67T2 |
| 71 | 1−5.38T+71T2 |
| 73 | 1+6T+73T2 |
| 79 | 1−15.0T+79T2 |
| 83 | 1+11.0T+83T2 |
| 89 | 1−5.09T+89T2 |
| 97 | 1−6.26T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.31070904435950212812600412734, −9.780154197229813220997409135135, −8.551098722056452767692876897214, −8.170853712915319883613391038322, −6.89503630605462440704286405668, −6.18108686749386443483918385014, −4.82216061412183189967938018675, −3.67191952564387840603540066156, −3.07107705661602441580678764547, −1.79092080666297334905946892235,
1.79092080666297334905946892235, 3.07107705661602441580678764547, 3.67191952564387840603540066156, 4.82216061412183189967938018675, 6.18108686749386443483918385014, 6.89503630605462440704286405668, 8.170853712915319883613391038322, 8.551098722056452767692876897214, 9.780154197229813220997409135135, 10.31070904435950212812600412734