L(s) = 1 | + (−4.5 + 7.79i)3-s + (−17.6 − 30.6i)5-s + (−40.5 − 70.1i)9-s + (−21.7 + 37.7i)11-s − 648.·13-s + 318.·15-s + (299. − 518. i)17-s + (−320. − 555. i)19-s + (135. + 235. i)23-s + (936. − 1.62e3i)25-s + 729·27-s − 5.28e3·29-s + (−221. + 383. i)31-s + (−196. − 339. i)33-s + (4.44e3 + 7.69e3i)37-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s + (−0.316 − 0.548i)5-s + (−0.166 − 0.288i)9-s + (−0.0542 + 0.0939i)11-s − 1.06·13-s + 0.365·15-s + (0.251 − 0.435i)17-s + (−0.203 − 0.352i)19-s + (0.0535 + 0.0927i)23-s + (0.299 − 0.519i)25-s + 0.192·27-s − 1.16·29-s + (−0.0414 + 0.0717i)31-s + (−0.0313 − 0.0542i)33-s + (0.533 + 0.924i)37-s + ⋯ |
Λ(s)=(=(588s/2ΓC(s)L(s)(0.198−0.980i)Λ(6−s)
Λ(s)=(=(588s/2ΓC(s+5/2)L(s)(0.198−0.980i)Λ(1−s)
Degree: |
2 |
Conductor: |
588
= 22⋅3⋅72
|
Sign: |
0.198−0.980i
|
Analytic conductor: |
94.3056 |
Root analytic conductor: |
9.71111 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ588(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 588, ( :5/2), 0.198−0.980i)
|
Particular Values
L(3) |
≈ |
0.9212580648 |
L(21) |
≈ |
0.9212580648 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(4.5−7.79i)T |
| 7 | 1 |
good | 5 | 1+(17.6+30.6i)T+(−1.56e3+2.70e3i)T2 |
| 11 | 1+(21.7−37.7i)T+(−8.05e4−1.39e5i)T2 |
| 13 | 1+648.T+3.71e5T2 |
| 17 | 1+(−299.+518.i)T+(−7.09e5−1.22e6i)T2 |
| 19 | 1+(320.+555.i)T+(−1.23e6+2.14e6i)T2 |
| 23 | 1+(−135.−235.i)T+(−3.21e6+5.57e6i)T2 |
| 29 | 1+5.28e3T+2.05e7T2 |
| 31 | 1+(221.−383.i)T+(−1.43e7−2.47e7i)T2 |
| 37 | 1+(−4.44e3−7.69e3i)T+(−3.46e7+6.00e7i)T2 |
| 41 | 1+7.48e3T+1.15e8T2 |
| 43 | 1−3.60e3T+1.47e8T2 |
| 47 | 1+(1.50e3+2.61e3i)T+(−1.14e8+1.98e8i)T2 |
| 53 | 1+(−3.55e3+6.16e3i)T+(−2.09e8−3.62e8i)T2 |
| 59 | 1+(−1.64e4+2.84e4i)T+(−3.57e8−6.19e8i)T2 |
| 61 | 1+(9.58e3+1.65e4i)T+(−4.22e8+7.31e8i)T2 |
| 67 | 1+(7.49e3−1.29e4i)T+(−6.75e8−1.16e9i)T2 |
| 71 | 1−2.50e4T+1.80e9T2 |
| 73 | 1+(−5.74e3+9.94e3i)T+(−1.03e9−1.79e9i)T2 |
| 79 | 1+(−2.70e4−4.67e4i)T+(−1.53e9+2.66e9i)T2 |
| 83 | 1−1.21e4T+3.93e9T2 |
| 89 | 1+(−4.45e4−7.71e4i)T+(−2.79e9+4.83e9i)T2 |
| 97 | 1+3.58e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.983434871023655906683557544157, −9.375801446252779900148752739949, −8.403010523582161637776921814206, −7.48604831012962188112347549751, −6.49158636155411251435873686893, −5.23641202956109717241233997441, −4.69844258414365679295064646166, −3.57746665008316057433151674246, −2.30861739763487503342694953904, −0.74983469601561607380404949101,
0.29162224823871025266661263449, 1.73735678507461767663967026368, 2.85050626624872558284038439762, 4.00593786637996127065493749911, 5.24048830953022228231909458603, 6.13326702175902869832949516158, 7.21185261103063538891272431401, 7.65380014309563899315013086958, 8.793290123791262103038151508258, 9.824257090554753333401471114441