Properties

Label 2-588-7.4-c5-0-8
Degree $2$
Conductor $588$
Sign $0.198 - 0.980i$
Analytic cond. $94.3056$
Root an. cond. $9.71111$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4.5 + 7.79i)3-s + (−17.6 − 30.6i)5-s + (−40.5 − 70.1i)9-s + (−21.7 + 37.7i)11-s − 648.·13-s + 318.·15-s + (299. − 518. i)17-s + (−320. − 555. i)19-s + (135. + 235. i)23-s + (936. − 1.62e3i)25-s + 729·27-s − 5.28e3·29-s + (−221. + 383. i)31-s + (−196. − 339. i)33-s + (4.44e3 + 7.69e3i)37-s + ⋯
L(s)  = 1  + (−0.288 + 0.499i)3-s + (−0.316 − 0.548i)5-s + (−0.166 − 0.288i)9-s + (−0.0542 + 0.0939i)11-s − 1.06·13-s + 0.365·15-s + (0.251 − 0.435i)17-s + (−0.203 − 0.352i)19-s + (0.0535 + 0.0927i)23-s + (0.299 − 0.519i)25-s + 0.192·27-s − 1.16·29-s + (−0.0414 + 0.0717i)31-s + (−0.0313 − 0.0542i)33-s + (0.533 + 0.924i)37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.198 - 0.980i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.198 - 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $0.198 - 0.980i$
Analytic conductor: \(94.3056\)
Root analytic conductor: \(9.71111\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{588} (361, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 588,\ (\ :5/2),\ 0.198 - 0.980i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.9212580648\)
\(L(\frac12)\) \(\approx\) \(0.9212580648\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (4.5 - 7.79i)T \)
7 \( 1 \)
good5 \( 1 + (17.6 + 30.6i)T + (-1.56e3 + 2.70e3i)T^{2} \)
11 \( 1 + (21.7 - 37.7i)T + (-8.05e4 - 1.39e5i)T^{2} \)
13 \( 1 + 648.T + 3.71e5T^{2} \)
17 \( 1 + (-299. + 518. i)T + (-7.09e5 - 1.22e6i)T^{2} \)
19 \( 1 + (320. + 555. i)T + (-1.23e6 + 2.14e6i)T^{2} \)
23 \( 1 + (-135. - 235. i)T + (-3.21e6 + 5.57e6i)T^{2} \)
29 \( 1 + 5.28e3T + 2.05e7T^{2} \)
31 \( 1 + (221. - 383. i)T + (-1.43e7 - 2.47e7i)T^{2} \)
37 \( 1 + (-4.44e3 - 7.69e3i)T + (-3.46e7 + 6.00e7i)T^{2} \)
41 \( 1 + 7.48e3T + 1.15e8T^{2} \)
43 \( 1 - 3.60e3T + 1.47e8T^{2} \)
47 \( 1 + (1.50e3 + 2.61e3i)T + (-1.14e8 + 1.98e8i)T^{2} \)
53 \( 1 + (-3.55e3 + 6.16e3i)T + (-2.09e8 - 3.62e8i)T^{2} \)
59 \( 1 + (-1.64e4 + 2.84e4i)T + (-3.57e8 - 6.19e8i)T^{2} \)
61 \( 1 + (9.58e3 + 1.65e4i)T + (-4.22e8 + 7.31e8i)T^{2} \)
67 \( 1 + (7.49e3 - 1.29e4i)T + (-6.75e8 - 1.16e9i)T^{2} \)
71 \( 1 - 2.50e4T + 1.80e9T^{2} \)
73 \( 1 + (-5.74e3 + 9.94e3i)T + (-1.03e9 - 1.79e9i)T^{2} \)
79 \( 1 + (-2.70e4 - 4.67e4i)T + (-1.53e9 + 2.66e9i)T^{2} \)
83 \( 1 - 1.21e4T + 3.93e9T^{2} \)
89 \( 1 + (-4.45e4 - 7.71e4i)T + (-2.79e9 + 4.83e9i)T^{2} \)
97 \( 1 + 3.58e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.983434871023655906683557544157, −9.375801446252779900148752739949, −8.403010523582161637776921814206, −7.48604831012962188112347549751, −6.49158636155411251435873686893, −5.23641202956109717241233997441, −4.69844258414365679295064646166, −3.57746665008316057433151674246, −2.30861739763487503342694953904, −0.74983469601561607380404949101, 0.29162224823871025266661263449, 1.73735678507461767663967026368, 2.85050626624872558284038439762, 4.00593786637996127065493749911, 5.24048830953022228231909458603, 6.13326702175902869832949516158, 7.21185261103063538891272431401, 7.65380014309563899315013086958, 8.793290123791262103038151508258, 9.824257090554753333401471114441

Graph of the $Z$-function along the critical line