Properties

Label 588.6.i.p.361.1
Level $588$
Weight $6$
Character 588.361
Analytic conductor $94.306$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,6,Mod(361,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.361");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 588.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(94.3056860500\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 91x^{6} - 2x^{5} + 5907x^{4} - 304x^{3} + 167650x^{2} + 161744x + 3378244 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(-2.68047 + 4.64270i\) of defining polynomial
Character \(\chi\) \(=\) 588.361
Dual form 588.6.i.p.373.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.50000 + 7.79423i) q^{3} +(-17.6925 - 30.6443i) q^{5} +(-40.5000 - 70.1481i) q^{9} +(-21.7786 + 37.7216i) q^{11} -648.252 q^{13} +318.465 q^{15} +(299.319 - 518.436i) q^{17} +(-320.493 - 555.111i) q^{19} +(135.824 + 235.254i) q^{23} +(936.453 - 1621.98i) q^{25} +729.000 q^{27} -5289.56 q^{29} +(-221.551 + 383.737i) q^{31} +(-196.007 - 339.495i) q^{33} +(4443.81 + 7696.91i) q^{37} +(2917.13 - 5052.62i) q^{39} -7487.34 q^{41} +3604.32 q^{43} +(-1433.09 + 2482.19i) q^{45} +(-1507.67 - 2611.35i) q^{47} +(2693.87 + 4665.93i) q^{51} +(3556.73 - 6160.44i) q^{53} +1541.27 q^{55} +5768.88 q^{57} +(16401.4 - 28408.1i) q^{59} +(-9581.63 - 16595.9i) q^{61} +(11469.2 + 19865.2i) q^{65} +(-7495.96 + 12983.4i) q^{67} -2444.83 q^{69} +25088.7 q^{71} +(5744.11 - 9949.10i) q^{73} +(8428.07 + 14597.9i) q^{75} +(27018.7 + 46797.8i) q^{79} +(-3280.50 + 5681.99i) q^{81} +12148.2 q^{83} -21182.8 q^{85} +(23803.0 - 41228.0i) q^{87} +(44522.5 + 77115.2i) q^{89} +(-1993.96 - 3453.63i) q^{93} +(-11340.6 + 19642.6i) q^{95} -35813.0 q^{97} +3528.13 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 36 q^{3} - 324 q^{9} + 1872 q^{17} + 1728 q^{19} + 3648 q^{23} + 3996 q^{25} + 5832 q^{27} - 2496 q^{29} + 3888 q^{31} + 12032 q^{37} + 18144 q^{41} - 4256 q^{43} + 19872 q^{47} + 16848 q^{51} + 22248 q^{53}+ \cdots - 641088 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.50000 + 7.79423i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) −17.6925 30.6443i −0.316493 0.548181i 0.663261 0.748388i \(-0.269172\pi\)
−0.979754 + 0.200207i \(0.935839\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −40.5000 70.1481i −0.166667 0.288675i
\(10\) 0 0
\(11\) −21.7786 + 37.7216i −0.0542685 + 0.0939959i −0.891883 0.452265i \(-0.850616\pi\)
0.837615 + 0.546261i \(0.183949\pi\)
\(12\) 0 0
\(13\) −648.252 −1.06386 −0.531931 0.846788i \(-0.678534\pi\)
−0.531931 + 0.846788i \(0.678534\pi\)
\(14\) 0 0
\(15\) 318.465 0.365454
\(16\) 0 0
\(17\) 299.319 518.436i 0.251196 0.435084i −0.712660 0.701510i \(-0.752510\pi\)
0.963855 + 0.266426i \(0.0858429\pi\)
\(18\) 0 0
\(19\) −320.493 555.111i −0.203674 0.352773i 0.746036 0.665906i \(-0.231955\pi\)
−0.949709 + 0.313133i \(0.898622\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 135.824 + 235.254i 0.0535373 + 0.0927293i 0.891552 0.452918i \(-0.149617\pi\)
−0.838015 + 0.545648i \(0.816284\pi\)
\(24\) 0 0
\(25\) 936.453 1621.98i 0.299665 0.519035i
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −5289.56 −1.16795 −0.583975 0.811772i \(-0.698503\pi\)
−0.583975 + 0.811772i \(0.698503\pi\)
\(30\) 0 0
\(31\) −221.551 + 383.737i −0.0414065 + 0.0717182i −0.885986 0.463712i \(-0.846517\pi\)
0.844579 + 0.535430i \(0.179851\pi\)
\(32\) 0 0
\(33\) −196.007 339.495i −0.0313320 0.0542685i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4443.81 + 7696.91i 0.533644 + 0.924298i 0.999228 + 0.0392943i \(0.0125110\pi\)
−0.465584 + 0.885004i \(0.654156\pi\)
\(38\) 0 0
\(39\) 2917.13 5052.62i 0.307111 0.531931i
\(40\) 0 0
\(41\) −7487.34 −0.695614 −0.347807 0.937566i \(-0.613073\pi\)
−0.347807 + 0.937566i \(0.613073\pi\)
\(42\) 0 0
\(43\) 3604.32 0.297270 0.148635 0.988892i \(-0.452512\pi\)
0.148635 + 0.988892i \(0.452512\pi\)
\(44\) 0 0
\(45\) −1433.09 + 2482.19i −0.105498 + 0.182727i
\(46\) 0 0
\(47\) −1507.67 2611.35i −0.0995543 0.172433i 0.811946 0.583733i \(-0.198408\pi\)
−0.911500 + 0.411299i \(0.865075\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 2693.87 + 4665.93i 0.145028 + 0.251196i
\(52\) 0 0
\(53\) 3556.73 6160.44i 0.173925 0.301247i −0.765864 0.643003i \(-0.777688\pi\)
0.939789 + 0.341756i \(0.111022\pi\)
\(54\) 0 0
\(55\) 1541.27 0.0687024
\(56\) 0 0
\(57\) 5768.88 0.235182
\(58\) 0 0
\(59\) 16401.4 28408.1i 0.613412 1.06246i −0.377249 0.926112i \(-0.623130\pi\)
0.990661 0.136348i \(-0.0435367\pi\)
\(60\) 0 0
\(61\) −9581.63 16595.9i −0.329697 0.571052i 0.652755 0.757569i \(-0.273613\pi\)
−0.982452 + 0.186517i \(0.940280\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 11469.2 + 19865.2i 0.336705 + 0.583189i
\(66\) 0 0
\(67\) −7495.96 + 12983.4i −0.204005 + 0.353347i −0.949815 0.312812i \(-0.898729\pi\)
0.745810 + 0.666158i \(0.232063\pi\)
\(68\) 0 0
\(69\) −2444.83 −0.0618195
\(70\) 0 0
\(71\) 25088.7 0.590653 0.295327 0.955396i \(-0.404572\pi\)
0.295327 + 0.955396i \(0.404572\pi\)
\(72\) 0 0
\(73\) 5744.11 9949.10i 0.126158 0.218513i −0.796027 0.605261i \(-0.793069\pi\)
0.922185 + 0.386749i \(0.126402\pi\)
\(74\) 0 0
\(75\) 8428.07 + 14597.9i 0.173012 + 0.299665i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 27018.7 + 46797.8i 0.487076 + 0.843641i 0.999890 0.0148591i \(-0.00472996\pi\)
−0.512813 + 0.858500i \(0.671397\pi\)
\(80\) 0 0
\(81\) −3280.50 + 5681.99i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 12148.2 0.193561 0.0967804 0.995306i \(-0.469146\pi\)
0.0967804 + 0.995306i \(0.469146\pi\)
\(84\) 0 0
\(85\) −21182.8 −0.318006
\(86\) 0 0
\(87\) 23803.0 41228.0i 0.337158 0.583975i
\(88\) 0 0
\(89\) 44522.5 + 77115.2i 0.595806 + 1.03197i 0.993433 + 0.114418i \(0.0365005\pi\)
−0.397627 + 0.917547i \(0.630166\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −1993.96 3453.63i −0.0239061 0.0414065i
\(94\) 0 0
\(95\) −11340.6 + 19642.6i −0.128922 + 0.223300i
\(96\) 0 0
\(97\) −35813.0 −0.386466 −0.193233 0.981153i \(-0.561897\pi\)
−0.193233 + 0.981153i \(0.561897\pi\)
\(98\) 0 0
\(99\) 3528.13 0.0361790
\(100\) 0 0
\(101\) −15438.2 + 26739.8i −0.150589 + 0.260828i −0.931444 0.363884i \(-0.881450\pi\)
0.780855 + 0.624712i \(0.214784\pi\)
\(102\) 0 0
\(103\) 10390.1 + 17996.1i 0.0964994 + 0.167142i 0.910233 0.414096i \(-0.135902\pi\)
−0.813734 + 0.581237i \(0.802569\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 54798.1 + 94913.0i 0.462707 + 0.801431i 0.999095 0.0425401i \(-0.0135450\pi\)
−0.536388 + 0.843971i \(0.680212\pi\)
\(108\) 0 0
\(109\) −95423.2 + 165278.i −0.769286 + 1.33244i 0.168665 + 0.985673i \(0.446054\pi\)
−0.937951 + 0.346768i \(0.887279\pi\)
\(110\) 0 0
\(111\) −79988.6 −0.616199
\(112\) 0 0
\(113\) 193044. 1.42220 0.711099 0.703092i \(-0.248198\pi\)
0.711099 + 0.703092i \(0.248198\pi\)
\(114\) 0 0
\(115\) 4806.12 8324.44i 0.0338883 0.0586963i
\(116\) 0 0
\(117\) 26254.2 + 45473.6i 0.177310 + 0.307111i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 79576.9 + 137831.i 0.494110 + 0.855823i
\(122\) 0 0
\(123\) 33693.0 58358.1i 0.200806 0.347807i
\(124\) 0 0
\(125\) −176851. −1.01235
\(126\) 0 0
\(127\) 124379. 0.684286 0.342143 0.939648i \(-0.388847\pi\)
0.342143 + 0.939648i \(0.388847\pi\)
\(128\) 0 0
\(129\) −16219.4 + 28092.9i −0.0858146 + 0.148635i
\(130\) 0 0
\(131\) 9690.58 + 16784.6i 0.0493368 + 0.0854539i 0.889639 0.456664i \(-0.150956\pi\)
−0.840302 + 0.542118i \(0.817623\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −12897.8 22339.7i −0.0609090 0.105498i
\(136\) 0 0
\(137\) −30976.2 + 53652.3i −0.141002 + 0.244223i −0.927874 0.372893i \(-0.878366\pi\)
0.786872 + 0.617116i \(0.211699\pi\)
\(138\) 0 0
\(139\) −381525. −1.67489 −0.837444 0.546523i \(-0.815951\pi\)
−0.837444 + 0.546523i \(0.815951\pi\)
\(140\) 0 0
\(141\) 27138.0 0.114955
\(142\) 0 0
\(143\) 14118.0 24453.1i 0.0577343 0.0999987i
\(144\) 0 0
\(145\) 93585.4 + 162095.i 0.369648 + 0.640248i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 42012.9 + 72768.4i 0.155030 + 0.268520i 0.933070 0.359695i \(-0.117119\pi\)
−0.778040 + 0.628215i \(0.783786\pi\)
\(150\) 0 0
\(151\) −26755.2 + 46341.3i −0.0954916 + 0.165396i −0.909814 0.415017i \(-0.863776\pi\)
0.814322 + 0.580413i \(0.197109\pi\)
\(152\) 0 0
\(153\) −48489.7 −0.167464
\(154\) 0 0
\(155\) 15679.1 0.0524195
\(156\) 0 0
\(157\) −203424. + 352340.i −0.658646 + 1.14081i 0.322320 + 0.946631i \(0.395537\pi\)
−0.980966 + 0.194178i \(0.937796\pi\)
\(158\) 0 0
\(159\) 32010.6 + 55444.0i 0.100416 + 0.173925i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 228934. + 396525.i 0.674902 + 1.16896i 0.976497 + 0.215529i \(0.0691475\pi\)
−0.301595 + 0.953436i \(0.597519\pi\)
\(164\) 0 0
\(165\) −6935.71 + 12013.0i −0.0198327 + 0.0343512i
\(166\) 0 0
\(167\) −492535. −1.36661 −0.683307 0.730132i \(-0.739459\pi\)
−0.683307 + 0.730132i \(0.739459\pi\)
\(168\) 0 0
\(169\) 48937.6 0.131803
\(170\) 0 0
\(171\) −25960.0 + 44964.0i −0.0678913 + 0.117591i
\(172\) 0 0
\(173\) 378270. + 655182.i 0.960918 + 1.66436i 0.720204 + 0.693763i \(0.244048\pi\)
0.240714 + 0.970596i \(0.422618\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 147613. + 255673.i 0.354153 + 0.613412i
\(178\) 0 0
\(179\) −302928. + 524687.i −0.706654 + 1.22396i 0.259437 + 0.965760i \(0.416463\pi\)
−0.966091 + 0.258201i \(0.916870\pi\)
\(180\) 0 0
\(181\) −491062. −1.11414 −0.557070 0.830465i \(-0.688075\pi\)
−0.557070 + 0.830465i \(0.688075\pi\)
\(182\) 0 0
\(183\) 172469. 0.380701
\(184\) 0 0
\(185\) 157244. 272355.i 0.337789 0.585067i
\(186\) 0 0
\(187\) 13037.5 + 22581.6i 0.0272641 + 0.0472227i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 215198. + 372734.i 0.426830 + 0.739292i 0.996589 0.0825200i \(-0.0262968\pi\)
−0.569759 + 0.821812i \(0.692964\pi\)
\(192\) 0 0
\(193\) −16025.6 + 27757.1i −0.0309685 + 0.0536391i −0.881094 0.472941i \(-0.843192\pi\)
0.850126 + 0.526580i \(0.176526\pi\)
\(194\) 0 0
\(195\) −206445. −0.388793
\(196\) 0 0
\(197\) 283226. 0.519957 0.259978 0.965614i \(-0.416285\pi\)
0.259978 + 0.965614i \(0.416285\pi\)
\(198\) 0 0
\(199\) 264275. 457737.i 0.473067 0.819376i −0.526458 0.850201i \(-0.676480\pi\)
0.999525 + 0.0308250i \(0.00981345\pi\)
\(200\) 0 0
\(201\) −67463.7 116851.i −0.117782 0.204005i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 132470. + 229444.i 0.220157 + 0.381322i
\(206\) 0 0
\(207\) 11001.7 19055.5i 0.0178458 0.0309098i
\(208\) 0 0
\(209\) 27919.6 0.0442123
\(210\) 0 0
\(211\) 701155. 1.08420 0.542098 0.840315i \(-0.317630\pi\)
0.542098 + 0.840315i \(0.317630\pi\)
\(212\) 0 0
\(213\) −112899. + 195547.i −0.170507 + 0.295327i
\(214\) 0 0
\(215\) −63769.3 110452.i −0.0940839 0.162958i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 51697.0 + 89541.9i 0.0728375 + 0.126158i
\(220\) 0 0
\(221\) −194034. + 336077.i −0.267238 + 0.462869i
\(222\) 0 0
\(223\) −222810. −0.300036 −0.150018 0.988683i \(-0.547933\pi\)
−0.150018 + 0.988683i \(0.547933\pi\)
\(224\) 0 0
\(225\) −151705. −0.199777
\(226\) 0 0
\(227\) 284442. 492668.i 0.366377 0.634584i −0.622619 0.782525i \(-0.713931\pi\)
0.988996 + 0.147941i \(0.0472646\pi\)
\(228\) 0 0
\(229\) 284674. + 493071.i 0.358724 + 0.621327i 0.987748 0.156058i \(-0.0498788\pi\)
−0.629024 + 0.777386i \(0.716545\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 571174. + 989303.i 0.689254 + 1.19382i 0.972080 + 0.234651i \(0.0753947\pi\)
−0.282826 + 0.959171i \(0.591272\pi\)
\(234\) 0 0
\(235\) −53348.7 + 92402.6i −0.0630164 + 0.109148i
\(236\) 0 0
\(237\) −486337. −0.562427
\(238\) 0 0
\(239\) 955201. 1.08168 0.540842 0.841124i \(-0.318106\pi\)
0.540842 + 0.841124i \(0.318106\pi\)
\(240\) 0 0
\(241\) 185835. 321876.i 0.206103 0.356981i −0.744380 0.667756i \(-0.767255\pi\)
0.950484 + 0.310774i \(0.100588\pi\)
\(242\) 0 0
\(243\) −29524.5 51137.9i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 207760. + 359852.i 0.216681 + 0.375302i
\(248\) 0 0
\(249\) −54667.0 + 94686.0i −0.0558762 + 0.0967804i
\(250\) 0 0
\(251\) 791754. 0.793242 0.396621 0.917982i \(-0.370183\pi\)
0.396621 + 0.917982i \(0.370183\pi\)
\(252\) 0 0
\(253\) −11832.2 −0.0116216
\(254\) 0 0
\(255\) 95322.6 165104.i 0.0918006 0.159003i
\(256\) 0 0
\(257\) 146814. + 254290.i 0.138655 + 0.240157i 0.926988 0.375092i \(-0.122389\pi\)
−0.788333 + 0.615249i \(0.789055\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 214227. + 371052.i 0.194658 + 0.337158i
\(262\) 0 0
\(263\) −499792. + 865666.i −0.445554 + 0.771722i −0.998091 0.0617666i \(-0.980327\pi\)
0.552537 + 0.833489i \(0.313660\pi\)
\(264\) 0 0
\(265\) −251710. −0.220184
\(266\) 0 0
\(267\) −801405. −0.687977
\(268\) 0 0
\(269\) −163695. + 283529.i −0.137929 + 0.238900i −0.926713 0.375771i \(-0.877378\pi\)
0.788783 + 0.614671i \(0.210711\pi\)
\(270\) 0 0
\(271\) 377418. + 653708.i 0.312176 + 0.540705i 0.978833 0.204660i \(-0.0656087\pi\)
−0.666657 + 0.745365i \(0.732275\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 40789.3 + 70649.1i 0.0325248 + 0.0563345i
\(276\) 0 0
\(277\) 916726. 1.58782e6i 0.717861 1.24337i −0.243985 0.969779i \(-0.578455\pi\)
0.961846 0.273592i \(-0.0882119\pi\)
\(278\) 0 0
\(279\) 35891.2 0.0276044
\(280\) 0 0
\(281\) 826428. 0.624366 0.312183 0.950022i \(-0.398940\pi\)
0.312183 + 0.950022i \(0.398940\pi\)
\(282\) 0 0
\(283\) 348118. 602959.i 0.258381 0.447529i −0.707427 0.706786i \(-0.750144\pi\)
0.965808 + 0.259257i \(0.0834776\pi\)
\(284\) 0 0
\(285\) −102066. 176783.i −0.0744334 0.128922i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 530744. + 919276.i 0.373801 + 0.647443i
\(290\) 0 0
\(291\) 161158. 279135.i 0.111563 0.193233i
\(292\) 0 0
\(293\) 1.74281e6 1.18599 0.592994 0.805207i \(-0.297946\pi\)
0.592994 + 0.805207i \(0.297946\pi\)
\(294\) 0 0
\(295\) −1.16073e6 −0.776561
\(296\) 0 0
\(297\) −15876.6 + 27499.1i −0.0104440 + 0.0180895i
\(298\) 0 0
\(299\) −88048.0 152504.i −0.0569563 0.0986512i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −138944. 240658.i −0.0869427 0.150589i
\(304\) 0 0
\(305\) −339046. + 587244.i −0.208693 + 0.361467i
\(306\) 0 0
\(307\) −3.25919e6 −1.97362 −0.986810 0.161881i \(-0.948244\pi\)
−0.986810 + 0.161881i \(0.948244\pi\)
\(308\) 0 0
\(309\) −187021. −0.111428
\(310\) 0 0
\(311\) 521355. 903013.i 0.305656 0.529411i −0.671752 0.740777i \(-0.734458\pi\)
0.977407 + 0.211366i \(0.0677911\pi\)
\(312\) 0 0
\(313\) −665471. 1.15263e6i −0.383945 0.665012i 0.607678 0.794184i \(-0.292101\pi\)
−0.991622 + 0.129172i \(0.958768\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −155988. 270180.i −0.0871855 0.151010i 0.819135 0.573601i \(-0.194454\pi\)
−0.906320 + 0.422591i \(0.861121\pi\)
\(318\) 0 0
\(319\) 115199. 199531.i 0.0633830 0.109783i
\(320\) 0 0
\(321\) −986365. −0.534288
\(322\) 0 0
\(323\) −383719. −0.204648
\(324\) 0 0
\(325\) −607057. + 1.05145e6i −0.318802 + 0.552182i
\(326\) 0 0
\(327\) −858809. 1.48750e6i −0.444147 0.769286i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.28844e6 2.23164e6i −0.646387 1.11958i −0.983979 0.178283i \(-0.942946\pi\)
0.337592 0.941293i \(-0.390388\pi\)
\(332\) 0 0
\(333\) 359949. 623450.i 0.177881 0.308099i
\(334\) 0 0
\(335\) 530489. 0.258264
\(336\) 0 0
\(337\) −47287.5 −0.0226815 −0.0113408 0.999936i \(-0.503610\pi\)
−0.0113408 + 0.999936i \(0.503610\pi\)
\(338\) 0 0
\(339\) −868697. + 1.50463e6i −0.410553 + 0.711099i
\(340\) 0 0
\(341\) −9650.13 16714.5i −0.00449415 0.00778409i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 43255.1 + 74920.0i 0.0195654 + 0.0338883i
\(346\) 0 0
\(347\) −164977. + 285748.i −0.0735529 + 0.127397i −0.900456 0.434947i \(-0.856767\pi\)
0.826903 + 0.562344i \(0.190100\pi\)
\(348\) 0 0
\(349\) 3.37497e6 1.48322 0.741612 0.670830i \(-0.234062\pi\)
0.741612 + 0.670830i \(0.234062\pi\)
\(350\) 0 0
\(351\) −472576. −0.204740
\(352\) 0 0
\(353\) 248157. 429821.i 0.105996 0.183591i −0.808149 0.588979i \(-0.799530\pi\)
0.914145 + 0.405388i \(0.132864\pi\)
\(354\) 0 0
\(355\) −443882. 768825.i −0.186937 0.323785i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.96667e6 3.40636e6i −0.805368 1.39494i −0.916042 0.401082i \(-0.868634\pi\)
0.110674 0.993857i \(-0.464699\pi\)
\(360\) 0 0
\(361\) 1.03262e6 1.78855e6i 0.417034 0.722324i
\(362\) 0 0
\(363\) −1.43238e6 −0.570549
\(364\) 0 0
\(365\) −406510. −0.159713
\(366\) 0 0
\(367\) −1.40772e6 + 2.43824e6i −0.545571 + 0.944957i 0.453000 + 0.891511i \(0.350354\pi\)
−0.998571 + 0.0534461i \(0.982979\pi\)
\(368\) 0 0
\(369\) 303237. + 525223.i 0.115936 + 0.200806i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −744213. 1.28901e6i −0.276965 0.479718i 0.693664 0.720299i \(-0.255995\pi\)
−0.970629 + 0.240581i \(0.922662\pi\)
\(374\) 0 0
\(375\) 795828. 1.37841e6i 0.292241 0.506176i
\(376\) 0 0
\(377\) 3.42897e6 1.24254
\(378\) 0 0
\(379\) −1.54843e6 −0.553724 −0.276862 0.960910i \(-0.589294\pi\)
−0.276862 + 0.960910i \(0.589294\pi\)
\(380\) 0 0
\(381\) −559705. + 969438.i −0.197536 + 0.342143i
\(382\) 0 0
\(383\) 1.59370e6 + 2.76037e6i 0.555150 + 0.961548i 0.997892 + 0.0648991i \(0.0206726\pi\)
−0.442742 + 0.896649i \(0.645994\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −145975. 252836.i −0.0495451 0.0858146i
\(388\) 0 0
\(389\) −1.70810e6 + 2.95851e6i −0.572319 + 0.991286i 0.424008 + 0.905658i \(0.360623\pi\)
−0.996327 + 0.0856275i \(0.972711\pi\)
\(390\) 0 0
\(391\) 162619. 0.0537934
\(392\) 0 0
\(393\) −174430. −0.0569693
\(394\) 0 0
\(395\) 956056. 1.65594e6i 0.308312 0.534012i
\(396\) 0 0
\(397\) −906989. 1.57095e6i −0.288819 0.500249i 0.684709 0.728816i \(-0.259929\pi\)
−0.973528 + 0.228567i \(0.926596\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.14325e6 1.98016e6i −0.355042 0.614951i 0.632083 0.774900i \(-0.282200\pi\)
−0.987125 + 0.159950i \(0.948867\pi\)
\(402\) 0 0
\(403\) 143621. 248758.i 0.0440509 0.0762983i
\(404\) 0 0
\(405\) 232161. 0.0703317
\(406\) 0 0
\(407\) −387120. −0.115840
\(408\) 0 0
\(409\) −1.50491e6 + 2.60658e6i −0.444838 + 0.770482i −0.998041 0.0625644i \(-0.980072\pi\)
0.553203 + 0.833047i \(0.313405\pi\)
\(410\) 0 0
\(411\) −278786. 482871.i −0.0814078 0.141002i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −214932. 372273.i −0.0612605 0.106106i
\(416\) 0 0
\(417\) 1.71686e6 2.97369e6i 0.483499 0.837444i
\(418\) 0 0
\(419\) 6.78379e6 1.88772 0.943860 0.330347i \(-0.107166\pi\)
0.943860 + 0.330347i \(0.107166\pi\)
\(420\) 0 0
\(421\) −2.60696e6 −0.716852 −0.358426 0.933558i \(-0.616686\pi\)
−0.358426 + 0.933558i \(0.616686\pi\)
\(422\) 0 0
\(423\) −122121. + 211520.i −0.0331848 + 0.0574777i
\(424\) 0 0
\(425\) −560597. 970982.i −0.150549 0.260759i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 127062. + 220078.i 0.0333329 + 0.0577343i
\(430\) 0 0
\(431\) −1.86270e6 + 3.22629e6i −0.483003 + 0.836586i −0.999810 0.0195166i \(-0.993787\pi\)
0.516807 + 0.856102i \(0.327121\pi\)
\(432\) 0 0
\(433\) 846651. 0.217013 0.108506 0.994096i \(-0.465393\pi\)
0.108506 + 0.994096i \(0.465393\pi\)
\(434\) 0 0
\(435\) −1.68454e6 −0.426832
\(436\) 0 0
\(437\) 87061.3 150795.i 0.0218083 0.0377730i
\(438\) 0 0
\(439\) −1.88962e6 3.27292e6i −0.467965 0.810539i 0.531365 0.847143i \(-0.321679\pi\)
−0.999330 + 0.0366039i \(0.988346\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.99864e6 6.92584e6i −0.968061 1.67673i −0.701155 0.713008i \(-0.747332\pi\)
−0.266906 0.963723i \(-0.586001\pi\)
\(444\) 0 0
\(445\) 1.57543e6 2.72872e6i 0.377136 0.653219i
\(446\) 0 0
\(447\) −756232. −0.179014
\(448\) 0 0
\(449\) 6.53115e6 1.52888 0.764441 0.644694i \(-0.223015\pi\)
0.764441 + 0.644694i \(0.223015\pi\)
\(450\) 0 0
\(451\) 163064. 282435.i 0.0377499 0.0653848i
\(452\) 0 0
\(453\) −240796. 417072.i −0.0551321 0.0954916i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.48083e6 6.02898e6i −0.779638 1.35037i −0.932151 0.362070i \(-0.882070\pi\)
0.152513 0.988301i \(-0.451263\pi\)
\(458\) 0 0
\(459\) 218204. 377940.i 0.0483427 0.0837319i
\(460\) 0 0
\(461\) 8.54527e6 1.87272 0.936362 0.351037i \(-0.114171\pi\)
0.936362 + 0.351037i \(0.114171\pi\)
\(462\) 0 0
\(463\) −5.93376e6 −1.28640 −0.643202 0.765696i \(-0.722394\pi\)
−0.643202 + 0.765696i \(0.722394\pi\)
\(464\) 0 0
\(465\) −70556.1 + 122207.i −0.0151322 + 0.0262097i
\(466\) 0 0
\(467\) 125369. + 217145.i 0.0266010 + 0.0460742i 0.879019 0.476786i \(-0.158198\pi\)
−0.852418 + 0.522860i \(0.824865\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −1.83081e6 3.17106e6i −0.380270 0.658646i
\(472\) 0 0
\(473\) −78496.9 + 135961.i −0.0161324 + 0.0279422i
\(474\) 0 0
\(475\) −1.20051e6 −0.244135
\(476\) 0 0
\(477\) −576191. −0.115950
\(478\) 0 0
\(479\) 3.27627e6 5.67466e6i 0.652440 1.13006i −0.330089 0.943950i \(-0.607079\pi\)
0.982529 0.186109i \(-0.0595878\pi\)
\(480\) 0 0
\(481\) −2.88071e6 4.98954e6i −0.567723 0.983326i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 633620. + 1.09746e6i 0.122314 + 0.211853i
\(486\) 0 0
\(487\) −1.39404e6 + 2.41456e6i −0.266351 + 0.461333i −0.967917 0.251271i \(-0.919151\pi\)
0.701566 + 0.712605i \(0.252485\pi\)
\(488\) 0 0
\(489\) −4.12081e6 −0.779310
\(490\) 0 0
\(491\) −2.79773e6 −0.523724 −0.261862 0.965105i \(-0.584337\pi\)
−0.261862 + 0.965105i \(0.584337\pi\)
\(492\) 0 0
\(493\) −1.58327e6 + 2.74230e6i −0.293384 + 0.508156i
\(494\) 0 0
\(495\) −62421.4 108117.i −0.0114504 0.0198327i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1.72384e6 + 2.98577e6i 0.309917 + 0.536791i 0.978344 0.206986i \(-0.0663656\pi\)
−0.668427 + 0.743777i \(0.733032\pi\)
\(500\) 0 0
\(501\) 2.21641e6 3.83893e6i 0.394507 0.683307i
\(502\) 0 0
\(503\) 9.58331e6 1.68887 0.844434 0.535660i \(-0.179937\pi\)
0.844434 + 0.535660i \(0.179937\pi\)
\(504\) 0 0
\(505\) 1.09256e6 0.190641
\(506\) 0 0
\(507\) −220219. + 381431.i −0.0380483 + 0.0659016i
\(508\) 0 0
\(509\) 387716. + 671544.i 0.0663314 + 0.114889i 0.897284 0.441454i \(-0.145537\pi\)
−0.830952 + 0.556343i \(0.812204\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −233640. 404676.i −0.0391970 0.0678913i
\(514\) 0 0
\(515\) 367651. 636791.i 0.0610827 0.105798i
\(516\) 0 0
\(517\) 131339. 0.0216107
\(518\) 0 0
\(519\) −6.80886e6 −1.10957
\(520\) 0 0
\(521\) −1.69232e6 + 2.93119e6i −0.273142 + 0.473096i −0.969665 0.244439i \(-0.921396\pi\)
0.696523 + 0.717535i \(0.254730\pi\)
\(522\) 0 0
\(523\) 95363.3 + 165174.i 0.0152450 + 0.0264051i 0.873547 0.486739i \(-0.161814\pi\)
−0.858302 + 0.513144i \(0.828481\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 132629. + 229720.i 0.0208023 + 0.0360306i
\(528\) 0 0
\(529\) 3.18128e6 5.51013e6i 0.494268 0.856096i
\(530\) 0 0
\(531\) −2.65703e6 −0.408941
\(532\) 0 0
\(533\) 4.85368e6 0.740037
\(534\) 0 0
\(535\) 1.93903e6 3.35849e6i 0.292886 0.507294i
\(536\) 0 0
\(537\) −2.72635e6 4.72218e6i −0.407987 0.706654i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1.65675e6 + 2.86958e6i 0.243369 + 0.421527i 0.961672 0.274203i \(-0.0884142\pi\)
−0.718303 + 0.695730i \(0.755081\pi\)
\(542\) 0 0
\(543\) 2.20978e6 3.82745e6i 0.321625 0.557070i
\(544\) 0 0
\(545\) 6.75309e6 0.973893
\(546\) 0 0
\(547\) −9.56473e6 −1.36680 −0.683399 0.730045i \(-0.739499\pi\)
−0.683399 + 0.730045i \(0.739499\pi\)
\(548\) 0 0
\(549\) −776112. + 1.34427e6i −0.109899 + 0.190351i
\(550\) 0 0
\(551\) 1.69527e6 + 2.93629e6i 0.237881 + 0.412022i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 1.41520e6 + 2.45119e6i 0.195022 + 0.337789i
\(556\) 0 0
\(557\) 551612. 955419.i 0.0753348 0.130484i −0.825897 0.563821i \(-0.809331\pi\)
0.901232 + 0.433337i \(0.142664\pi\)
\(558\) 0 0
\(559\) −2.33650e6 −0.316255
\(560\) 0 0
\(561\) −234675. −0.0314818
\(562\) 0 0
\(563\) 3.34291e6 5.79008e6i 0.444481 0.769864i −0.553535 0.832826i \(-0.686721\pi\)
0.998016 + 0.0629623i \(0.0200548\pi\)
\(564\) 0 0
\(565\) −3.41542e6 5.91569e6i −0.450115 0.779622i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.79528e6 3.10951e6i −0.232461 0.402635i 0.726070 0.687620i \(-0.241345\pi\)
−0.958532 + 0.284985i \(0.908011\pi\)
\(570\) 0 0
\(571\) 3.43553e6 5.95051e6i 0.440964 0.763773i −0.556797 0.830649i \(-0.687970\pi\)
0.997761 + 0.0668760i \(0.0213032\pi\)
\(572\) 0 0
\(573\) −3.87357e6 −0.492861
\(574\) 0 0
\(575\) 508770. 0.0641730
\(576\) 0 0
\(577\) −3.18091e6 + 5.50950e6i −0.397752 + 0.688926i −0.993448 0.114284i \(-0.963543\pi\)
0.595697 + 0.803210i \(0.296876\pi\)
\(578\) 0 0
\(579\) −144230. 249814.i −0.0178797 0.0309685i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 154921. + 268332.i 0.0188773 + 0.0326964i
\(584\) 0 0
\(585\) 929004. 1.60908e6i 0.112235 0.194396i
\(586\) 0 0
\(587\) 604781. 0.0724441 0.0362220 0.999344i \(-0.488468\pi\)
0.0362220 + 0.999344i \(0.488468\pi\)
\(588\) 0 0
\(589\) 284022. 0.0337337
\(590\) 0 0
\(591\) −1.27452e6 + 2.20753e6i −0.150099 + 0.259978i
\(592\) 0 0
\(593\) 1.42291e6 + 2.46454e6i 0.166165 + 0.287806i 0.937068 0.349146i \(-0.113528\pi\)
−0.770903 + 0.636952i \(0.780195\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.37847e6 + 4.11963e6i 0.273125 + 0.473067i
\(598\) 0 0
\(599\) −7.12692e6 + 1.23442e7i −0.811587 + 1.40571i 0.100166 + 0.994971i \(0.468062\pi\)
−0.911753 + 0.410739i \(0.865271\pi\)
\(600\) 0 0
\(601\) −3.70613e6 −0.418538 −0.209269 0.977858i \(-0.567108\pi\)
−0.209269 + 0.977858i \(0.567108\pi\)
\(602\) 0 0
\(603\) 1.21435e6 0.136003
\(604\) 0 0
\(605\) 2.81582e6 4.87715e6i 0.312764 0.541724i
\(606\) 0 0
\(607\) 589577. + 1.02118e6i 0.0649485 + 0.112494i 0.896671 0.442697i \(-0.145978\pi\)
−0.831723 + 0.555191i \(0.812645\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 977347. + 1.69281e6i 0.105912 + 0.183445i
\(612\) 0 0
\(613\) 4.21653e6 7.30324e6i 0.453214 0.784990i −0.545369 0.838196i \(-0.683611\pi\)
0.998584 + 0.0532055i \(0.0169438\pi\)
\(614\) 0 0
\(615\) −2.38445e6 −0.254215
\(616\) 0 0
\(617\) 1.68786e7 1.78494 0.892471 0.451105i \(-0.148970\pi\)
0.892471 + 0.451105i \(0.148970\pi\)
\(618\) 0 0
\(619\) 358059. 620176.i 0.0375602 0.0650561i −0.846634 0.532175i \(-0.821375\pi\)
0.884194 + 0.467119i \(0.154708\pi\)
\(620\) 0 0
\(621\) 99015.5 + 171500.i 0.0103033 + 0.0178458i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 202510. + 350758.i 0.0207370 + 0.0359176i
\(626\) 0 0
\(627\) −125638. + 217612.i −0.0127630 + 0.0221062i
\(628\) 0 0
\(629\) 5.32048e6 0.536196
\(630\) 0 0
\(631\) −564276. −0.0564181 −0.0282090 0.999602i \(-0.508980\pi\)
−0.0282090 + 0.999602i \(0.508980\pi\)
\(632\) 0 0
\(633\) −3.15520e6 + 5.46497e6i −0.312981 + 0.542098i
\(634\) 0 0
\(635\) −2.20057e6 3.81150e6i −0.216571 0.375113i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.01609e6 1.75993e6i −0.0984422 0.170507i
\(640\) 0 0
\(641\) −8.86193e6 + 1.53493e7i −0.851889 + 1.47552i 0.0276117 + 0.999619i \(0.491210\pi\)
−0.879501 + 0.475897i \(0.842124\pi\)
\(642\) 0 0
\(643\) −1.52159e7 −1.45134 −0.725671 0.688042i \(-0.758470\pi\)
−0.725671 + 0.688042i \(0.758470\pi\)
\(644\) 0 0
\(645\) 1.14785e6 0.108639
\(646\) 0 0
\(647\) 7.82800e6 1.35585e7i 0.735174 1.27336i −0.219473 0.975618i \(-0.570434\pi\)
0.954647 0.297740i \(-0.0962327\pi\)
\(648\) 0 0
\(649\) 714401. + 1.23738e6i 0.0665779 + 0.115316i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 282189. + 488765.i 0.0258974 + 0.0448557i 0.878684 0.477404i \(-0.158422\pi\)
−0.852786 + 0.522260i \(0.825089\pi\)
\(654\) 0 0
\(655\) 342901. 593921.i 0.0312295 0.0540911i
\(656\) 0 0
\(657\) −930546. −0.0841055
\(658\) 0 0
\(659\) −1.79285e7 −1.60816 −0.804082 0.594518i \(-0.797343\pi\)
−0.804082 + 0.594518i \(0.797343\pi\)
\(660\) 0 0
\(661\) −3.23606e6 + 5.60501e6i −0.288079 + 0.498968i −0.973351 0.229319i \(-0.926350\pi\)
0.685272 + 0.728287i \(0.259683\pi\)
\(662\) 0 0
\(663\) −1.74631e6 3.02470e6i −0.154290 0.267238i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −718448. 1.24439e6i −0.0625289 0.108303i
\(668\) 0 0
\(669\) 1.00265e6 1.73663e6i 0.0866128 0.150018i
\(670\) 0 0
\(671\) 834698. 0.0715687
\(672\) 0 0
\(673\) 1.60916e7 1.36950 0.684751 0.728778i \(-0.259911\pi\)
0.684751 + 0.728778i \(0.259911\pi\)
\(674\) 0 0
\(675\) 682674. 1.18243e6i 0.0576705 0.0998883i
\(676\) 0 0
\(677\) 7.72406e6 + 1.33785e7i 0.647700 + 1.12185i 0.983671 + 0.179977i \(0.0576022\pi\)
−0.335971 + 0.941872i \(0.609064\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 2.55998e6 + 4.43401e6i 0.211528 + 0.366377i
\(682\) 0 0
\(683\) −6.36336e6 + 1.10217e7i −0.521957 + 0.904056i 0.477717 + 0.878514i \(0.341464\pi\)
−0.999674 + 0.0255418i \(0.991869\pi\)
\(684\) 0 0
\(685\) 2.19218e6 0.178505
\(686\) 0 0
\(687\) −5.12414e6 −0.414218
\(688\) 0 0
\(689\) −2.30566e6 + 3.99352e6i −0.185032 + 0.320485i
\(690\) 0 0
\(691\) 1.01252e7 + 1.75373e7i 0.806692 + 1.39723i 0.915143 + 0.403130i \(0.132078\pi\)
−0.108450 + 0.994102i \(0.534589\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.75012e6 + 1.16915e7i 0.530090 + 0.918142i
\(696\) 0 0
\(697\) −2.24111e6 + 3.88171e6i −0.174735 + 0.302650i
\(698\) 0 0
\(699\) −1.02811e7 −0.795881
\(700\) 0 0
\(701\) 1.86857e7 1.43619 0.718097 0.695943i \(-0.245013\pi\)
0.718097 + 0.695943i \(0.245013\pi\)
\(702\) 0 0
\(703\) 2.84843e6 4.93362e6i 0.217378 0.376511i
\(704\) 0 0
\(705\) −480138. 831623.i −0.0363826 0.0630164i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 9.31412e6 + 1.61325e7i 0.695867 + 1.20528i 0.969888 + 0.243553i \(0.0783131\pi\)
−0.274020 + 0.961724i \(0.588354\pi\)
\(710\) 0 0
\(711\) 2.18852e6 3.79062e6i 0.162359 0.281214i
\(712\) 0 0
\(713\) −120367. −0.00886717
\(714\) 0 0
\(715\) −999131. −0.0730899
\(716\) 0 0
\(717\) −4.29841e6 + 7.44506e6i −0.312255 + 0.540842i
\(718\) 0 0
\(719\) 9.46227e6 + 1.63891e7i 0.682611 + 1.18232i 0.974181 + 0.225767i \(0.0724889\pi\)
−0.291570 + 0.956549i \(0.594178\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1.67251e6 + 2.89688e6i 0.118994 + 0.206103i
\(724\) 0 0
\(725\) −4.95342e6 + 8.57958e6i −0.349994 + 0.606207i
\(726\) 0 0
\(727\) −1.55979e7 −1.09454 −0.547270 0.836956i \(-0.684333\pi\)
−0.547270 + 0.836956i \(0.684333\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 1.07884e6 1.86861e6i 0.0746731 0.129338i
\(732\) 0 0
\(733\) 4.27960e6 + 7.41248e6i 0.294200 + 0.509569i 0.974798 0.223087i \(-0.0716135\pi\)
−0.680598 + 0.732657i \(0.738280\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −326503. 565520.i −0.0221421 0.0383512i
\(738\) 0 0
\(739\) −1.41686e6 + 2.45407e6i −0.0954367 + 0.165301i −0.909791 0.415067i \(-0.863758\pi\)
0.814354 + 0.580368i \(0.197091\pi\)
\(740\) 0 0
\(741\) −3.73969e6 −0.250201
\(742\) 0 0
\(743\) 1.04924e7 0.697274 0.348637 0.937258i \(-0.386645\pi\)
0.348637 + 0.937258i \(0.386645\pi\)
\(744\) 0 0
\(745\) 1.48662e6 2.57491e6i 0.0981319 0.169969i
\(746\) 0 0
\(747\) −492003. 852174.i −0.0322601 0.0558762i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −4.33439e6 7.50738e6i −0.280432 0.485723i 0.691059 0.722798i \(-0.257144\pi\)
−0.971491 + 0.237076i \(0.923811\pi\)
\(752\) 0 0
\(753\) −3.56289e6 + 6.17111e6i −0.228989 + 0.396621i
\(754\) 0 0
\(755\) 1.89346e6 0.120890
\(756\) 0 0
\(757\) 1.08369e7 0.687332 0.343666 0.939092i \(-0.388331\pi\)
0.343666 + 0.939092i \(0.388331\pi\)
\(758\) 0 0
\(759\) 53244.9 92222.9i 0.00335486 0.00581078i
\(760\) 0 0
\(761\) −199347. 345279.i −0.0124781 0.0216127i 0.859719 0.510767i \(-0.170639\pi\)
−0.872197 + 0.489155i \(0.837305\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 857903. + 1.48593e6i 0.0530011 + 0.0918006i
\(766\) 0 0
\(767\) −1.06323e7 + 1.84156e7i −0.652586 + 1.13031i
\(768\) 0 0
\(769\) −1.38915e7 −0.847096 −0.423548 0.905874i \(-0.639215\pi\)
−0.423548 + 0.905874i \(0.639215\pi\)
\(770\) 0 0
\(771\) −2.64266e6 −0.160105
\(772\) 0 0
\(773\) −1.13344e7 + 1.96317e7i −0.682259 + 1.18171i 0.292031 + 0.956409i \(0.405669\pi\)
−0.974290 + 0.225298i \(0.927664\pi\)
\(774\) 0 0
\(775\) 414944. + 718703.i 0.0248162 + 0.0429829i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.39964e6 + 4.15630e6i 0.141678 + 0.245394i
\(780\) 0 0
\(781\) −546397. + 946388.i −0.0320539 + 0.0555190i
\(782\) 0 0
\(783\) −3.85609e6 −0.224772
\(784\) 0 0
\(785\) 1.43963e7 0.833827
\(786\) 0 0
\(787\) 3.45674e6 5.98725e6i 0.198944 0.344581i −0.749242 0.662296i \(-0.769582\pi\)
0.948186 + 0.317715i \(0.102916\pi\)
\(788\) 0 0
\(789\) −4.49813e6 7.79099e6i −0.257241 0.445554i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6.21131e6 + 1.07583e7i 0.350752 + 0.607521i
\(794\) 0 0
\(795\) 1.13269e6 1.96188e6i 0.0635616 0.110092i
\(796\) 0 0
\(797\) −1.94035e6 −0.108202 −0.0541009 0.998535i \(-0.517229\pi\)
−0.0541009 + 0.998535i \(0.517229\pi\)
\(798\) 0 0
\(799\) −1.80509e6 −0.100031
\(800\) 0 0
\(801\) 3.60632e6 6.24633e6i 0.198602 0.343989i
\(802\) 0 0
\(803\) 250197. + 433355.i 0.0136929 + 0.0237167i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.47326e6 2.55176e6i −0.0796334 0.137929i
\(808\) 0 0
\(809\) 1.14954e7 1.99107e7i 0.617524 1.06958i −0.372413 0.928067i \(-0.621469\pi\)
0.989936 0.141515i \(-0.0451973\pi\)
\(810\) 0 0
\(811\) −2.57027e7 −1.37223 −0.686116 0.727492i \(-0.740686\pi\)
−0.686116 + 0.727492i \(0.740686\pi\)
\(812\) 0 0
\(813\) −6.79353e6 −0.360470
\(814\) 0 0
\(815\) 8.10081e6 1.40310e7i 0.427203 0.739937i
\(816\) 0 0
\(817\) −1.15516e6 2.00079e6i −0.0605462 0.104869i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.38228e6 + 1.27865e7i 0.382237 + 0.662054i 0.991382 0.131005i \(-0.0418205\pi\)
−0.609145 + 0.793059i \(0.708487\pi\)
\(822\) 0 0
\(823\) −4.75296e6 + 8.23237e6i −0.244605 + 0.423668i −0.962020 0.272978i \(-0.911992\pi\)
0.717416 + 0.696645i \(0.245325\pi\)
\(824\) 0 0
\(825\) −734207. −0.0375564
\(826\) 0 0
\(827\) 2.00621e7 1.02003 0.510014 0.860166i \(-0.329640\pi\)
0.510014 + 0.860166i \(0.329640\pi\)
\(828\) 0 0
\(829\) −9.61268e6 + 1.66496e7i −0.485801 + 0.841431i −0.999867 0.0163191i \(-0.994805\pi\)
0.514066 + 0.857751i \(0.328139\pi\)
\(830\) 0 0
\(831\) 8.25054e6 + 1.42903e7i 0.414457 + 0.717861i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 8.71416e6 + 1.50934e7i 0.432523 + 0.749152i
\(836\) 0 0
\(837\) −161510. + 279744.i −0.00796869 + 0.0138022i
\(838\) 0 0
\(839\) −1.80768e7 −0.886577 −0.443289 0.896379i \(-0.646188\pi\)
−0.443289 + 0.896379i \(0.646188\pi\)
\(840\) 0 0
\(841\) 7.46827e6 0.364108
\(842\) 0 0
\(843\) −3.71892e6 + 6.44137e6i −0.180239 + 0.312183i
\(844\) 0 0
\(845\) −865827. 1.49966e6i −0.0417147 0.0722520i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 3.13307e6 + 5.42663e6i 0.149176 + 0.258381i
\(850\) 0 0
\(851\) −1.20715e6 + 2.09085e6i −0.0571397 + 0.0989688i
\(852\) 0 0
\(853\) −1.58070e7 −0.743837 −0.371919 0.928265i \(-0.621300\pi\)
−0.371919 + 0.928265i \(0.621300\pi\)
\(854\) 0 0
\(855\) 1.83718e6 0.0859483
\(856\) 0 0
\(857\) 8.07474e6 1.39859e7i 0.375557 0.650484i −0.614853 0.788642i \(-0.710785\pi\)
0.990410 + 0.138157i \(0.0441180\pi\)
\(858\) 0 0
\(859\) −725533. 1.25666e6i −0.0335486 0.0581079i 0.848764 0.528772i \(-0.177348\pi\)
−0.882312 + 0.470665i \(0.844014\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 8.36797e6 + 1.44937e7i 0.382466 + 0.662451i 0.991414 0.130759i \(-0.0417415\pi\)
−0.608948 + 0.793210i \(0.708408\pi\)
\(864\) 0 0
\(865\) 1.33851e7 2.31836e7i 0.608247 1.05351i
\(866\) 0 0
\(867\) −9.55340e6 −0.431629
\(868\) 0 0
\(869\) −2.35372e6 −0.105732
\(870\) 0 0
\(871\) 4.85927e6 8.41651e6i 0.217033 0.375912i
\(872\) 0 0
\(873\) 1.45043e6 + 2.51221e6i 0.0644110 + 0.111563i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 8.87055e6 + 1.53642e7i 0.389450 + 0.674547i 0.992376 0.123250i \(-0.0393318\pi\)
−0.602926 + 0.797797i \(0.705998\pi\)
\(878\) 0 0
\(879\) −7.84264e6 + 1.35838e7i −0.342365 + 0.592994i
\(880\) 0 0
\(881\) 3.78264e6 0.164193 0.0820967 0.996624i \(-0.473838\pi\)
0.0820967 + 0.996624i \(0.473838\pi\)
\(882\) 0 0
\(883\) −3.93853e7 −1.69993 −0.849967 0.526836i \(-0.823378\pi\)
−0.849967 + 0.526836i \(0.823378\pi\)
\(884\) 0 0
\(885\) 5.22328e6 9.04698e6i 0.224174 0.388280i
\(886\) 0 0
\(887\) 3.58923e6 + 6.21673e6i 0.153177 + 0.265310i 0.932394 0.361445i \(-0.117716\pi\)
−0.779217 + 0.626754i \(0.784383\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −142889. 247492.i −0.00602984 0.0104440i
\(892\) 0 0
\(893\) −966393. + 1.67384e6i −0.0405532 + 0.0702402i
\(894\) 0 0
\(895\) 2.14382e7 0.894603
\(896\) 0 0
\(897\) 1.58486e6 0.0657675
\(898\) 0 0
\(899\) 1.17191e6 2.02980e6i 0.0483608 0.0837633i
\(900\) 0 0
\(901\) −2.12920e6 3.68788e6i −0.0873784 0.151344i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 8.68810e6 + 1.50482e7i 0.352617 + 0.610751i
\(906\) 0 0
\(907\) −1.09739e7 + 1.90074e7i −0.442938 + 0.767192i −0.997906 0.0646801i \(-0.979397\pi\)
0.554968 + 0.831872i \(0.312731\pi\)
\(908\) 0 0
\(909\) 2.50099e6 0.100393
\(910\) 0 0
\(911\) −2.60249e7 −1.03895 −0.519474 0.854486i \(-0.673872\pi\)
−0.519474 + 0.854486i \(0.673872\pi\)
\(912\) 0 0
\(913\) −264571. + 458251.i −0.0105043 + 0.0181939i
\(914\) 0 0
\(915\) −3.05141e6 5.28520e6i −0.120489 0.208693i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.09078e7 1.88929e7i −0.426039 0.737922i 0.570478 0.821313i \(-0.306758\pi\)
−0.996517 + 0.0833915i \(0.973425\pi\)
\(920\) 0 0
\(921\) 1.46664e7 2.54029e7i 0.569735 0.986810i
\(922\) 0 0
\(923\) −1.62638e7 −0.628374
\(924\) 0 0
\(925\) 1.66457e7 0.639657
\(926\) 0 0
\(927\) 841594. 1.45768e6i 0.0321665 0.0557140i
\(928\) 0 0
\(929\) 6.23793e6 + 1.08044e7i 0.237138 + 0.410735i 0.959892 0.280370i \(-0.0904573\pi\)
−0.722754 + 0.691106i \(0.757124\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 4.69219e6 + 8.12712e6i 0.176470 + 0.305656i
\(934\) 0 0
\(935\) 461332. 799050.i 0.0172577 0.0298913i
\(936\) 0 0
\(937\) 3.37205e7 1.25471 0.627357 0.778732i \(-0.284137\pi\)
0.627357 + 0.778732i \(0.284137\pi\)
\(938\) 0 0
\(939\) 1.19785e7 0.443341
\(940\) 0 0
\(941\) −1.24943e7 + 2.16407e7i −0.459978 + 0.796706i −0.998959 0.0456123i \(-0.985476\pi\)
0.538981 + 0.842318i \(0.318809\pi\)
\(942\) 0 0
\(943\) −1.01696e6 1.76142e6i −0.0372413 0.0645037i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.59082e7 2.75539e7i −0.576430 0.998407i −0.995885 0.0906301i \(-0.971112\pi\)
0.419454 0.907776i \(-0.362221\pi\)
\(948\) 0 0
\(949\) −3.72363e6 + 6.44952e6i −0.134215 + 0.232467i
\(950\) 0 0
\(951\) 2.80779e6 0.100673
\(952\) 0 0
\(953\) −3.79217e6 −0.135256 −0.0676279 0.997711i \(-0.521543\pi\)
−0.0676279 + 0.997711i \(0.521543\pi\)
\(954\) 0 0
\(955\) 7.61478e6 1.31892e7i 0.270177 0.467961i
\(956\) 0 0
\(957\) 1.03679e6 + 1.79578e6i 0.0365942 + 0.0633830i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.42164e7 + 2.46235e7i 0.496571 + 0.860086i
\(962\) 0 0
\(963\) 4.43864e6 7.68795e6i 0.154236 0.267144i
\(964\) 0 0
\(965\) 1.13413e6 0.0392052
\(966\) 0 0
\(967\) 2.32765e7 0.800482 0.400241 0.916410i \(-0.368926\pi\)
0.400241 + 0.916410i \(0.368926\pi\)
\(968\) 0 0
\(969\) 1.72674e6 2.99080e6i 0.0590768 0.102324i
\(970\) 0 0
\(971\) −1.33082e7 2.30505e7i −0.452973 0.784572i 0.545596 0.838048i \(-0.316303\pi\)
−0.998569 + 0.0534761i \(0.982970\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −5.46352e6 9.46309e6i −0.184061 0.318802i
\(976\) 0 0
\(977\) 7.75064e6 1.34245e7i 0.259777 0.449948i −0.706405 0.707808i \(-0.749684\pi\)
0.966182 + 0.257860i \(0.0830175\pi\)
\(978\) 0 0
\(979\) −3.87855e6 −0.129334
\(980\) 0 0
\(981\) 1.54586e7 0.512857
\(982\) 0 0
\(983\) 2.30518e7 3.99269e7i 0.760889 1.31790i −0.181504 0.983390i \(-0.558097\pi\)
0.942393 0.334508i \(-0.108570\pi\)
\(984\) 0 0
\(985\) −5.01097e6 8.67925e6i −0.164563 0.285031i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 489552. + 847929.i 0.0159150 + 0.0275657i
\(990\) 0 0
\(991\) −9.11404e6 + 1.57860e7i −0.294799 + 0.510608i −0.974938 0.222476i \(-0.928586\pi\)
0.680139 + 0.733083i \(0.261920\pi\)
\(992\) 0 0
\(993\) 2.31918e7 0.746384
\(994\) 0 0
\(995\) −1.87027e7 −0.598889
\(996\) 0 0
\(997\) 4.37420e6 7.57634e6i 0.139367 0.241391i −0.787890 0.615816i \(-0.788826\pi\)
0.927257 + 0.374425i \(0.122160\pi\)
\(998\) 0 0
\(999\) 3.23954e6 + 5.61105e6i 0.102700 + 0.177881i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.6.i.p.361.1 8
7.2 even 3 inner 588.6.i.p.373.1 8
7.3 odd 6 588.6.a.m.1.1 4
7.4 even 3 588.6.a.o.1.4 yes 4
7.5 odd 6 588.6.i.q.373.4 8
7.6 odd 2 588.6.i.q.361.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.6.a.m.1.1 4 7.3 odd 6
588.6.a.o.1.4 yes 4 7.4 even 3
588.6.i.p.361.1 8 1.1 even 1 trivial
588.6.i.p.373.1 8 7.2 even 3 inner
588.6.i.q.361.4 8 7.6 odd 2
588.6.i.q.373.4 8 7.5 odd 6