Properties

Label 588.6.a.m.1.1
Level $588$
Weight $6$
Character 588.1
Self dual yes
Analytic conductor $94.306$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,6,Mod(1,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 588.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(94.3056860500\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.1904704.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 87x^{2} + 88x + 1838 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4}\cdot 7 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(6.36093\) of defining polynomial
Character \(\chi\) \(=\) 588.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.00000 q^{3} -35.3849 q^{5} +81.0000 q^{9} +43.5572 q^{11} +648.252 q^{13} +318.465 q^{15} +598.639 q^{17} -640.987 q^{19} -271.648 q^{23} -1872.91 q^{25} -729.000 q^{27} -5289.56 q^{29} -443.101 q^{31} -392.015 q^{33} -8887.62 q^{37} -5834.27 q^{39} +7487.34 q^{41} +3604.32 q^{43} -2866.18 q^{45} -3015.33 q^{47} -5387.75 q^{51} -7113.47 q^{53} -1541.27 q^{55} +5768.88 q^{57} +32802.9 q^{59} -19163.3 q^{61} -22938.4 q^{65} +14991.9 q^{67} +2444.83 q^{69} +25088.7 q^{71} +11488.2 q^{73} +16856.1 q^{75} -54037.5 q^{79} +6561.00 q^{81} -12148.2 q^{83} -21182.8 q^{85} +47606.0 q^{87} +89045.0 q^{89} +3987.91 q^{93} +22681.3 q^{95} +35813.0 q^{97} +3528.13 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 36 q^{3} + 324 q^{9} + 1872 q^{17} + 1728 q^{19} - 3648 q^{23} - 3996 q^{25} - 2916 q^{27} - 1248 q^{29} + 3888 q^{31} - 12032 q^{37} - 9072 q^{41} - 2128 q^{43} + 19872 q^{47} - 16848 q^{51} - 22248 q^{53}+ \cdots + 320544 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.00000 −0.577350
\(4\) 0 0
\(5\) −35.3849 −0.632985 −0.316493 0.948595i \(-0.602505\pi\)
−0.316493 + 0.948595i \(0.602505\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 43.5572 0.108537 0.0542685 0.998526i \(-0.482717\pi\)
0.0542685 + 0.998526i \(0.482717\pi\)
\(12\) 0 0
\(13\) 648.252 1.06386 0.531931 0.846788i \(-0.321466\pi\)
0.531931 + 0.846788i \(0.321466\pi\)
\(14\) 0 0
\(15\) 318.465 0.365454
\(16\) 0 0
\(17\) 598.639 0.502392 0.251196 0.967936i \(-0.419176\pi\)
0.251196 + 0.967936i \(0.419176\pi\)
\(18\) 0 0
\(19\) −640.987 −0.407348 −0.203674 0.979039i \(-0.565288\pi\)
−0.203674 + 0.979039i \(0.565288\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −271.648 −0.107075 −0.0535373 0.998566i \(-0.517050\pi\)
−0.0535373 + 0.998566i \(0.517050\pi\)
\(24\) 0 0
\(25\) −1872.91 −0.599330
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) −5289.56 −1.16795 −0.583975 0.811772i \(-0.698503\pi\)
−0.583975 + 0.811772i \(0.698503\pi\)
\(30\) 0 0
\(31\) −443.101 −0.0828131 −0.0414065 0.999142i \(-0.513184\pi\)
−0.0414065 + 0.999142i \(0.513184\pi\)
\(32\) 0 0
\(33\) −392.015 −0.0626639
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8887.62 −1.06729 −0.533644 0.845709i \(-0.679178\pi\)
−0.533644 + 0.845709i \(0.679178\pi\)
\(38\) 0 0
\(39\) −5834.27 −0.614221
\(40\) 0 0
\(41\) 7487.34 0.695614 0.347807 0.937566i \(-0.386927\pi\)
0.347807 + 0.937566i \(0.386927\pi\)
\(42\) 0 0
\(43\) 3604.32 0.297270 0.148635 0.988892i \(-0.452512\pi\)
0.148635 + 0.988892i \(0.452512\pi\)
\(44\) 0 0
\(45\) −2866.18 −0.210995
\(46\) 0 0
\(47\) −3015.33 −0.199109 −0.0995543 0.995032i \(-0.531742\pi\)
−0.0995543 + 0.995032i \(0.531742\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −5387.75 −0.290056
\(52\) 0 0
\(53\) −7113.47 −0.347850 −0.173925 0.984759i \(-0.555645\pi\)
−0.173925 + 0.984759i \(0.555645\pi\)
\(54\) 0 0
\(55\) −1541.27 −0.0687024
\(56\) 0 0
\(57\) 5768.88 0.235182
\(58\) 0 0
\(59\) 32802.9 1.22682 0.613412 0.789763i \(-0.289797\pi\)
0.613412 + 0.789763i \(0.289797\pi\)
\(60\) 0 0
\(61\) −19163.3 −0.659394 −0.329697 0.944087i \(-0.606947\pi\)
−0.329697 + 0.944087i \(0.606947\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −22938.4 −0.673409
\(66\) 0 0
\(67\) 14991.9 0.408010 0.204005 0.978970i \(-0.434604\pi\)
0.204005 + 0.978970i \(0.434604\pi\)
\(68\) 0 0
\(69\) 2444.83 0.0618195
\(70\) 0 0
\(71\) 25088.7 0.590653 0.295327 0.955396i \(-0.404572\pi\)
0.295327 + 0.955396i \(0.404572\pi\)
\(72\) 0 0
\(73\) 11488.2 0.252317 0.126158 0.992010i \(-0.459735\pi\)
0.126158 + 0.992010i \(0.459735\pi\)
\(74\) 0 0
\(75\) 16856.1 0.346023
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −54037.5 −0.974153 −0.487076 0.873359i \(-0.661937\pi\)
−0.487076 + 0.873359i \(0.661937\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) −12148.2 −0.193561 −0.0967804 0.995306i \(-0.530854\pi\)
−0.0967804 + 0.995306i \(0.530854\pi\)
\(84\) 0 0
\(85\) −21182.8 −0.318006
\(86\) 0 0
\(87\) 47606.0 0.674316
\(88\) 0 0
\(89\) 89045.0 1.19161 0.595806 0.803129i \(-0.296833\pi\)
0.595806 + 0.803129i \(0.296833\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 3987.91 0.0478122
\(94\) 0 0
\(95\) 22681.3 0.257845
\(96\) 0 0
\(97\) 35813.0 0.386466 0.193233 0.981153i \(-0.438103\pi\)
0.193233 + 0.981153i \(0.438103\pi\)
\(98\) 0 0
\(99\) 3528.13 0.0361790
\(100\) 0 0
\(101\) −30876.4 −0.301178 −0.150589 0.988596i \(-0.548117\pi\)
−0.150589 + 0.988596i \(0.548117\pi\)
\(102\) 0 0
\(103\) 20780.1 0.192999 0.0964994 0.995333i \(-0.469235\pi\)
0.0964994 + 0.995333i \(0.469235\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −109596. −0.925413 −0.462707 0.886511i \(-0.653122\pi\)
−0.462707 + 0.886511i \(0.653122\pi\)
\(108\) 0 0
\(109\) 190846. 1.53857 0.769286 0.638905i \(-0.220612\pi\)
0.769286 + 0.638905i \(0.220612\pi\)
\(110\) 0 0
\(111\) 79988.6 0.616199
\(112\) 0 0
\(113\) 193044. 1.42220 0.711099 0.703092i \(-0.248198\pi\)
0.711099 + 0.703092i \(0.248198\pi\)
\(114\) 0 0
\(115\) 9612.24 0.0677766
\(116\) 0 0
\(117\) 52508.4 0.354621
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −159154. −0.988220
\(122\) 0 0
\(123\) −67386.1 −0.401613
\(124\) 0 0
\(125\) 176851. 1.01235
\(126\) 0 0
\(127\) 124379. 0.684286 0.342143 0.939648i \(-0.388847\pi\)
0.342143 + 0.939648i \(0.388847\pi\)
\(128\) 0 0
\(129\) −32438.8 −0.171629
\(130\) 0 0
\(131\) 19381.2 0.0986737 0.0493368 0.998782i \(-0.484289\pi\)
0.0493368 + 0.998782i \(0.484289\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 25795.6 0.121818
\(136\) 0 0
\(137\) 61952.4 0.282005 0.141002 0.990009i \(-0.454967\pi\)
0.141002 + 0.990009i \(0.454967\pi\)
\(138\) 0 0
\(139\) 381525. 1.67489 0.837444 0.546523i \(-0.184049\pi\)
0.837444 + 0.546523i \(0.184049\pi\)
\(140\) 0 0
\(141\) 27138.0 0.114955
\(142\) 0 0
\(143\) 28236.0 0.115469
\(144\) 0 0
\(145\) 187171. 0.739295
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −84025.7 −0.310061 −0.155030 0.987910i \(-0.549548\pi\)
−0.155030 + 0.987910i \(0.549548\pi\)
\(150\) 0 0
\(151\) 53510.3 0.190983 0.0954916 0.995430i \(-0.469558\pi\)
0.0954916 + 0.995430i \(0.469558\pi\)
\(152\) 0 0
\(153\) 48489.7 0.167464
\(154\) 0 0
\(155\) 15679.1 0.0524195
\(156\) 0 0
\(157\) −406847. −1.31729 −0.658646 0.752453i \(-0.728871\pi\)
−0.658646 + 0.752453i \(0.728871\pi\)
\(158\) 0 0
\(159\) 64021.2 0.200831
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −457868. −1.34980 −0.674902 0.737907i \(-0.735814\pi\)
−0.674902 + 0.737907i \(0.735814\pi\)
\(164\) 0 0
\(165\) 13871.4 0.0396653
\(166\) 0 0
\(167\) 492535. 1.36661 0.683307 0.730132i \(-0.260541\pi\)
0.683307 + 0.730132i \(0.260541\pi\)
\(168\) 0 0
\(169\) 48937.6 0.131803
\(170\) 0 0
\(171\) −51919.9 −0.135783
\(172\) 0 0
\(173\) 756539. 1.92184 0.960918 0.276833i \(-0.0892849\pi\)
0.960918 + 0.276833i \(0.0892849\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −295226. −0.708307
\(178\) 0 0
\(179\) 605856. 1.41331 0.706654 0.707559i \(-0.250204\pi\)
0.706654 + 0.707559i \(0.250204\pi\)
\(180\) 0 0
\(181\) 491062. 1.11414 0.557070 0.830465i \(-0.311925\pi\)
0.557070 + 0.830465i \(0.311925\pi\)
\(182\) 0 0
\(183\) 172469. 0.380701
\(184\) 0 0
\(185\) 314488. 0.675577
\(186\) 0 0
\(187\) 26075.0 0.0545281
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −430396. −0.853660 −0.426830 0.904332i \(-0.640370\pi\)
−0.426830 + 0.904332i \(0.640370\pi\)
\(192\) 0 0
\(193\) 32051.2 0.0619371 0.0309685 0.999520i \(-0.490141\pi\)
0.0309685 + 0.999520i \(0.490141\pi\)
\(194\) 0 0
\(195\) 206445. 0.388793
\(196\) 0 0
\(197\) 283226. 0.519957 0.259978 0.965614i \(-0.416285\pi\)
0.259978 + 0.965614i \(0.416285\pi\)
\(198\) 0 0
\(199\) 528549. 0.946134 0.473067 0.881026i \(-0.343147\pi\)
0.473067 + 0.881026i \(0.343147\pi\)
\(200\) 0 0
\(201\) −134927. −0.235565
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −264939. −0.440313
\(206\) 0 0
\(207\) −22003.5 −0.0356915
\(208\) 0 0
\(209\) −27919.6 −0.0442123
\(210\) 0 0
\(211\) 701155. 1.08420 0.542098 0.840315i \(-0.317630\pi\)
0.542098 + 0.840315i \(0.317630\pi\)
\(212\) 0 0
\(213\) −225799. −0.341014
\(214\) 0 0
\(215\) −127539. −0.188168
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −103394. −0.145675
\(220\) 0 0
\(221\) 388069. 0.534476
\(222\) 0 0
\(223\) 222810. 0.300036 0.150018 0.988683i \(-0.452067\pi\)
0.150018 + 0.988683i \(0.452067\pi\)
\(224\) 0 0
\(225\) −151705. −0.199777
\(226\) 0 0
\(227\) 568884. 0.732755 0.366377 0.930466i \(-0.380598\pi\)
0.366377 + 0.930466i \(0.380598\pi\)
\(228\) 0 0
\(229\) 569349. 0.717447 0.358724 0.933444i \(-0.383212\pi\)
0.358724 + 0.933444i \(0.383212\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.14235e6 −1.37851 −0.689254 0.724520i \(-0.742061\pi\)
−0.689254 + 0.724520i \(0.742061\pi\)
\(234\) 0 0
\(235\) 106697. 0.126033
\(236\) 0 0
\(237\) 486337. 0.562427
\(238\) 0 0
\(239\) 955201. 1.08168 0.540842 0.841124i \(-0.318106\pi\)
0.540842 + 0.841124i \(0.318106\pi\)
\(240\) 0 0
\(241\) 371670. 0.412206 0.206103 0.978530i \(-0.433922\pi\)
0.206103 + 0.978530i \(0.433922\pi\)
\(242\) 0 0
\(243\) −59049.0 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −415521. −0.433362
\(248\) 0 0
\(249\) 109334. 0.111752
\(250\) 0 0
\(251\) −791754. −0.793242 −0.396621 0.917982i \(-0.629817\pi\)
−0.396621 + 0.917982i \(0.629817\pi\)
\(252\) 0 0
\(253\) −11832.2 −0.0116216
\(254\) 0 0
\(255\) 190645. 0.183601
\(256\) 0 0
\(257\) 293629. 0.277310 0.138655 0.990341i \(-0.455722\pi\)
0.138655 + 0.990341i \(0.455722\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −428454. −0.389317
\(262\) 0 0
\(263\) 999585. 0.891108 0.445554 0.895255i \(-0.353007\pi\)
0.445554 + 0.895255i \(0.353007\pi\)
\(264\) 0 0
\(265\) 251710. 0.220184
\(266\) 0 0
\(267\) −801405. −0.687977
\(268\) 0 0
\(269\) −327391. −0.275858 −0.137929 0.990442i \(-0.544045\pi\)
−0.137929 + 0.990442i \(0.544045\pi\)
\(270\) 0 0
\(271\) 754837. 0.624353 0.312176 0.950024i \(-0.398942\pi\)
0.312176 + 0.950024i \(0.398942\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −81578.5 −0.0650495
\(276\) 0 0
\(277\) −1.83345e6 −1.43572 −0.717861 0.696187i \(-0.754879\pi\)
−0.717861 + 0.696187i \(0.754879\pi\)
\(278\) 0 0
\(279\) −35891.2 −0.0276044
\(280\) 0 0
\(281\) 826428. 0.624366 0.312183 0.950022i \(-0.398940\pi\)
0.312183 + 0.950022i \(0.398940\pi\)
\(282\) 0 0
\(283\) 696237. 0.516763 0.258381 0.966043i \(-0.416811\pi\)
0.258381 + 0.966043i \(0.416811\pi\)
\(284\) 0 0
\(285\) −204132. −0.148867
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.06149e6 −0.747603
\(290\) 0 0
\(291\) −322317. −0.223126
\(292\) 0 0
\(293\) −1.74281e6 −1.18599 −0.592994 0.805207i \(-0.702054\pi\)
−0.592994 + 0.805207i \(0.702054\pi\)
\(294\) 0 0
\(295\) −1.16073e6 −0.776561
\(296\) 0 0
\(297\) −31753.2 −0.0208880
\(298\) 0 0
\(299\) −176096. −0.113913
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 277888. 0.173885
\(304\) 0 0
\(305\) 678091. 0.417387
\(306\) 0 0
\(307\) 3.25919e6 1.97362 0.986810 0.161881i \(-0.0517560\pi\)
0.986810 + 0.161881i \(0.0517560\pi\)
\(308\) 0 0
\(309\) −187021. −0.111428
\(310\) 0 0
\(311\) 1.04271e6 0.611311 0.305656 0.952142i \(-0.401124\pi\)
0.305656 + 0.952142i \(0.401124\pi\)
\(312\) 0 0
\(313\) −1.33094e6 −0.767889 −0.383945 0.923356i \(-0.625435\pi\)
−0.383945 + 0.923356i \(0.625435\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 311977. 0.174371 0.0871855 0.996192i \(-0.472213\pi\)
0.0871855 + 0.996192i \(0.472213\pi\)
\(318\) 0 0
\(319\) −230398. −0.126766
\(320\) 0 0
\(321\) 986365. 0.534288
\(322\) 0 0
\(323\) −383719. −0.204648
\(324\) 0 0
\(325\) −1.21411e6 −0.637604
\(326\) 0 0
\(327\) −1.71762e6 −0.888295
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.57687e6 1.29277 0.646387 0.763009i \(-0.276279\pi\)
0.646387 + 0.763009i \(0.276279\pi\)
\(332\) 0 0
\(333\) −719898. −0.355762
\(334\) 0 0
\(335\) −530489. −0.258264
\(336\) 0 0
\(337\) −47287.5 −0.0226815 −0.0113408 0.999936i \(-0.503610\pi\)
−0.0113408 + 0.999936i \(0.503610\pi\)
\(338\) 0 0
\(339\) −1.73739e6 −0.821106
\(340\) 0 0
\(341\) −19300.3 −0.00898829
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −86510.1 −0.0391308
\(346\) 0 0
\(347\) 329954. 0.147106 0.0735529 0.997291i \(-0.476566\pi\)
0.0735529 + 0.997291i \(0.476566\pi\)
\(348\) 0 0
\(349\) −3.37497e6 −1.48322 −0.741612 0.670830i \(-0.765938\pi\)
−0.741612 + 0.670830i \(0.765938\pi\)
\(350\) 0 0
\(351\) −472576. −0.204740
\(352\) 0 0
\(353\) 496314. 0.211992 0.105996 0.994367i \(-0.466197\pi\)
0.105996 + 0.994367i \(0.466197\pi\)
\(354\) 0 0
\(355\) −887763. −0.373875
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.93333e6 1.61074 0.805368 0.592775i \(-0.201968\pi\)
0.805368 + 0.592775i \(0.201968\pi\)
\(360\) 0 0
\(361\) −2.06523e6 −0.834068
\(362\) 0 0
\(363\) 1.43238e6 0.570549
\(364\) 0 0
\(365\) −406510. −0.159713
\(366\) 0 0
\(367\) −2.81544e6 −1.09114 −0.545571 0.838065i \(-0.683687\pi\)
−0.545571 + 0.838065i \(0.683687\pi\)
\(368\) 0 0
\(369\) 606475. 0.231871
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1.48843e6 0.553930 0.276965 0.960880i \(-0.410671\pi\)
0.276965 + 0.960880i \(0.410671\pi\)
\(374\) 0 0
\(375\) −1.59166e6 −0.584482
\(376\) 0 0
\(377\) −3.42897e6 −1.24254
\(378\) 0 0
\(379\) −1.54843e6 −0.553724 −0.276862 0.960910i \(-0.589294\pi\)
−0.276862 + 0.960910i \(0.589294\pi\)
\(380\) 0 0
\(381\) −1.11941e6 −0.395073
\(382\) 0 0
\(383\) 3.18741e6 1.11030 0.555150 0.831750i \(-0.312661\pi\)
0.555150 + 0.831750i \(0.312661\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 291950. 0.0990901
\(388\) 0 0
\(389\) 3.41619e6 1.14464 0.572319 0.820031i \(-0.306044\pi\)
0.572319 + 0.820031i \(0.306044\pi\)
\(390\) 0 0
\(391\) −162619. −0.0537934
\(392\) 0 0
\(393\) −174430. −0.0569693
\(394\) 0 0
\(395\) 1.91211e6 0.616624
\(396\) 0 0
\(397\) −1.81398e6 −0.577638 −0.288819 0.957384i \(-0.593263\pi\)
−0.288819 + 0.957384i \(0.593263\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.28650e6 0.710084 0.355042 0.934850i \(-0.384467\pi\)
0.355042 + 0.934850i \(0.384467\pi\)
\(402\) 0 0
\(403\) −287241. −0.0881017
\(404\) 0 0
\(405\) −232161. −0.0703317
\(406\) 0 0
\(407\) −387120. −0.115840
\(408\) 0 0
\(409\) −3.00982e6 −0.889676 −0.444838 0.895611i \(-0.646739\pi\)
−0.444838 + 0.895611i \(0.646739\pi\)
\(410\) 0 0
\(411\) −557571. −0.162816
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 429864. 0.122521
\(416\) 0 0
\(417\) −3.43372e6 −0.966997
\(418\) 0 0
\(419\) −6.78379e6 −1.88772 −0.943860 0.330347i \(-0.892834\pi\)
−0.943860 + 0.330347i \(0.892834\pi\)
\(420\) 0 0
\(421\) −2.60696e6 −0.716852 −0.358426 0.933558i \(-0.616686\pi\)
−0.358426 + 0.933558i \(0.616686\pi\)
\(422\) 0 0
\(423\) −244242. −0.0663696
\(424\) 0 0
\(425\) −1.12119e6 −0.301098
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −254124. −0.0666658
\(430\) 0 0
\(431\) 3.72540e6 0.966006 0.483003 0.875619i \(-0.339546\pi\)
0.483003 + 0.875619i \(0.339546\pi\)
\(432\) 0 0
\(433\) −846651. −0.217013 −0.108506 0.994096i \(-0.534607\pi\)
−0.108506 + 0.994096i \(0.534607\pi\)
\(434\) 0 0
\(435\) −1.68454e6 −0.426832
\(436\) 0 0
\(437\) 174123. 0.0436166
\(438\) 0 0
\(439\) −3.77924e6 −0.935930 −0.467965 0.883747i \(-0.655013\pi\)
−0.467965 + 0.883747i \(0.655013\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.99728e6 1.93612 0.968061 0.250714i \(-0.0806655\pi\)
0.968061 + 0.250714i \(0.0806655\pi\)
\(444\) 0 0
\(445\) −3.15085e6 −0.754272
\(446\) 0 0
\(447\) 756232. 0.179014
\(448\) 0 0
\(449\) 6.53115e6 1.52888 0.764441 0.644694i \(-0.223015\pi\)
0.764441 + 0.644694i \(0.223015\pi\)
\(450\) 0 0
\(451\) 326128. 0.0754999
\(452\) 0 0
\(453\) −481593. −0.110264
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6.96167e6 1.55928 0.779638 0.626231i \(-0.215403\pi\)
0.779638 + 0.626231i \(0.215403\pi\)
\(458\) 0 0
\(459\) −436408. −0.0966853
\(460\) 0 0
\(461\) −8.54527e6 −1.87272 −0.936362 0.351037i \(-0.885829\pi\)
−0.936362 + 0.351037i \(0.885829\pi\)
\(462\) 0 0
\(463\) −5.93376e6 −1.28640 −0.643202 0.765696i \(-0.722394\pi\)
−0.643202 + 0.765696i \(0.722394\pi\)
\(464\) 0 0
\(465\) −141112. −0.0302644
\(466\) 0 0
\(467\) 250738. 0.0532019 0.0266010 0.999646i \(-0.491532\pi\)
0.0266010 + 0.999646i \(0.491532\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 3.66162e6 0.760539
\(472\) 0 0
\(473\) 156994. 0.0322649
\(474\) 0 0
\(475\) 1.20051e6 0.244135
\(476\) 0 0
\(477\) −576191. −0.115950
\(478\) 0 0
\(479\) 6.55253e6 1.30488 0.652440 0.757841i \(-0.273746\pi\)
0.652440 + 0.757841i \(0.273746\pi\)
\(480\) 0 0
\(481\) −5.76142e6 −1.13545
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.26724e6 −0.244627
\(486\) 0 0
\(487\) 2.78809e6 0.532702 0.266351 0.963876i \(-0.414182\pi\)
0.266351 + 0.963876i \(0.414182\pi\)
\(488\) 0 0
\(489\) 4.12081e6 0.779310
\(490\) 0 0
\(491\) −2.79773e6 −0.523724 −0.261862 0.965105i \(-0.584337\pi\)
−0.261862 + 0.965105i \(0.584337\pi\)
\(492\) 0 0
\(493\) −3.16653e6 −0.586768
\(494\) 0 0
\(495\) −124843. −0.0229008
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −3.44767e6 −0.619833 −0.309917 0.950764i \(-0.600301\pi\)
−0.309917 + 0.950764i \(0.600301\pi\)
\(500\) 0 0
\(501\) −4.43281e6 −0.789015
\(502\) 0 0
\(503\) −9.58331e6 −1.68887 −0.844434 0.535660i \(-0.820063\pi\)
−0.844434 + 0.535660i \(0.820063\pi\)
\(504\) 0 0
\(505\) 1.09256e6 0.190641
\(506\) 0 0
\(507\) −440438. −0.0760966
\(508\) 0 0
\(509\) 775432. 0.132663 0.0663314 0.997798i \(-0.478871\pi\)
0.0663314 + 0.997798i \(0.478871\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 467279. 0.0783941
\(514\) 0 0
\(515\) −735303. −0.122165
\(516\) 0 0
\(517\) −131339. −0.0216107
\(518\) 0 0
\(519\) −6.80886e6 −1.10957
\(520\) 0 0
\(521\) −3.38464e6 −0.546284 −0.273142 0.961974i \(-0.588063\pi\)
−0.273142 + 0.961974i \(0.588063\pi\)
\(522\) 0 0
\(523\) 190727. 0.0304900 0.0152450 0.999884i \(-0.495147\pi\)
0.0152450 + 0.999884i \(0.495147\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −265258. −0.0416046
\(528\) 0 0
\(529\) −6.36255e6 −0.988535
\(530\) 0 0
\(531\) 2.65703e6 0.408941
\(532\) 0 0
\(533\) 4.85368e6 0.740037
\(534\) 0 0
\(535\) 3.87805e6 0.585773
\(536\) 0 0
\(537\) −5.45270e6 −0.815974
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −3.31351e6 −0.486738 −0.243369 0.969934i \(-0.578253\pi\)
−0.243369 + 0.969934i \(0.578253\pi\)
\(542\) 0 0
\(543\) −4.41956e6 −0.643249
\(544\) 0 0
\(545\) −6.75309e6 −0.973893
\(546\) 0 0
\(547\) −9.56473e6 −1.36680 −0.683399 0.730045i \(-0.739499\pi\)
−0.683399 + 0.730045i \(0.739499\pi\)
\(548\) 0 0
\(549\) −1.55222e6 −0.219798
\(550\) 0 0
\(551\) 3.39054e6 0.475762
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −2.83039e6 −0.390045
\(556\) 0 0
\(557\) −1.10322e6 −0.150670 −0.0753348 0.997158i \(-0.524003\pi\)
−0.0753348 + 0.997158i \(0.524003\pi\)
\(558\) 0 0
\(559\) 2.33650e6 0.316255
\(560\) 0 0
\(561\) −234675. −0.0314818
\(562\) 0 0
\(563\) 6.68581e6 0.888962 0.444481 0.895788i \(-0.353388\pi\)
0.444481 + 0.895788i \(0.353388\pi\)
\(564\) 0 0
\(565\) −6.83085e6 −0.900230
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.59056e6 0.464923 0.232461 0.972606i \(-0.425322\pi\)
0.232461 + 0.972606i \(0.425322\pi\)
\(570\) 0 0
\(571\) −6.87106e6 −0.881929 −0.440964 0.897525i \(-0.645363\pi\)
−0.440964 + 0.897525i \(0.645363\pi\)
\(572\) 0 0
\(573\) 3.87357e6 0.492861
\(574\) 0 0
\(575\) 508770. 0.0641730
\(576\) 0 0
\(577\) −6.36182e6 −0.795503 −0.397752 0.917493i \(-0.630209\pi\)
−0.397752 + 0.917493i \(0.630209\pi\)
\(578\) 0 0
\(579\) −288461. −0.0357594
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −309843. −0.0377546
\(584\) 0 0
\(585\) −1.85801e6 −0.224470
\(586\) 0 0
\(587\) −604781. −0.0724441 −0.0362220 0.999344i \(-0.511532\pi\)
−0.0362220 + 0.999344i \(0.511532\pi\)
\(588\) 0 0
\(589\) 284022. 0.0337337
\(590\) 0 0
\(591\) −2.54903e6 −0.300197
\(592\) 0 0
\(593\) 2.84581e6 0.332330 0.166165 0.986098i \(-0.446862\pi\)
0.166165 + 0.986098i \(0.446862\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −4.75694e6 −0.546251
\(598\) 0 0
\(599\) 1.42538e7 1.62317 0.811587 0.584232i \(-0.198604\pi\)
0.811587 + 0.584232i \(0.198604\pi\)
\(600\) 0 0
\(601\) 3.70613e6 0.418538 0.209269 0.977858i \(-0.432892\pi\)
0.209269 + 0.977858i \(0.432892\pi\)
\(602\) 0 0
\(603\) 1.21435e6 0.136003
\(604\) 0 0
\(605\) 5.63165e6 0.625528
\(606\) 0 0
\(607\) 1.17915e6 0.129897 0.0649485 0.997889i \(-0.479312\pi\)
0.0649485 + 0.997889i \(0.479312\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.95469e6 −0.211824
\(612\) 0 0
\(613\) −8.43306e6 −0.906429 −0.453214 0.891402i \(-0.649723\pi\)
−0.453214 + 0.891402i \(0.649723\pi\)
\(614\) 0 0
\(615\) 2.38445e6 0.254215
\(616\) 0 0
\(617\) 1.68786e7 1.78494 0.892471 0.451105i \(-0.148970\pi\)
0.892471 + 0.451105i \(0.148970\pi\)
\(618\) 0 0
\(619\) 716117. 0.0751204 0.0375602 0.999294i \(-0.488041\pi\)
0.0375602 + 0.999294i \(0.488041\pi\)
\(620\) 0 0
\(621\) 198031. 0.0206065
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −405020. −0.0414741
\(626\) 0 0
\(627\) 251276. 0.0255260
\(628\) 0 0
\(629\) −5.32048e6 −0.536196
\(630\) 0 0
\(631\) −564276. −0.0564181 −0.0282090 0.999602i \(-0.508980\pi\)
−0.0282090 + 0.999602i \(0.508980\pi\)
\(632\) 0 0
\(633\) −6.31040e6 −0.625961
\(634\) 0 0
\(635\) −4.40114e6 −0.433143
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 2.03219e6 0.196884
\(640\) 0 0
\(641\) 1.77239e7 1.70378 0.851889 0.523722i \(-0.175457\pi\)
0.851889 + 0.523722i \(0.175457\pi\)
\(642\) 0 0
\(643\) 1.52159e7 1.45134 0.725671 0.688042i \(-0.241530\pi\)
0.725671 + 0.688042i \(0.241530\pi\)
\(644\) 0 0
\(645\) 1.14785e6 0.108639
\(646\) 0 0
\(647\) 1.56560e7 1.47035 0.735174 0.677879i \(-0.237101\pi\)
0.735174 + 0.677879i \(0.237101\pi\)
\(648\) 0 0
\(649\) 1.42880e6 0.133156
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −564378. −0.0517949 −0.0258974 0.999665i \(-0.508244\pi\)
−0.0258974 + 0.999665i \(0.508244\pi\)
\(654\) 0 0
\(655\) −685801. −0.0624590
\(656\) 0 0
\(657\) 930546. 0.0841055
\(658\) 0 0
\(659\) −1.79285e7 −1.60816 −0.804082 0.594518i \(-0.797343\pi\)
−0.804082 + 0.594518i \(0.797343\pi\)
\(660\) 0 0
\(661\) −6.47211e6 −0.576159 −0.288079 0.957607i \(-0.593017\pi\)
−0.288079 + 0.957607i \(0.593017\pi\)
\(662\) 0 0
\(663\) −3.49262e6 −0.308580
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.43690e6 0.125058
\(668\) 0 0
\(669\) −2.00529e6 −0.173226
\(670\) 0 0
\(671\) −834698. −0.0715687
\(672\) 0 0
\(673\) 1.60916e7 1.36950 0.684751 0.728778i \(-0.259911\pi\)
0.684751 + 0.728778i \(0.259911\pi\)
\(674\) 0 0
\(675\) 1.36535e6 0.115341
\(676\) 0 0
\(677\) 1.54481e7 1.29540 0.647700 0.761896i \(-0.275731\pi\)
0.647700 + 0.761896i \(0.275731\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −5.11995e6 −0.423056
\(682\) 0 0
\(683\) 1.27267e7 1.04391 0.521957 0.852972i \(-0.325202\pi\)
0.521957 + 0.852972i \(0.325202\pi\)
\(684\) 0 0
\(685\) −2.19218e6 −0.178505
\(686\) 0 0
\(687\) −5.12414e6 −0.414218
\(688\) 0 0
\(689\) −4.61132e6 −0.370064
\(690\) 0 0
\(691\) 2.02504e7 1.61338 0.806692 0.590972i \(-0.201256\pi\)
0.806692 + 0.590972i \(0.201256\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.35002e7 −1.06018
\(696\) 0 0
\(697\) 4.48221e6 0.349470
\(698\) 0 0
\(699\) 1.02811e7 0.795881
\(700\) 0 0
\(701\) 1.86857e7 1.43619 0.718097 0.695943i \(-0.245013\pi\)
0.718097 + 0.695943i \(0.245013\pi\)
\(702\) 0 0
\(703\) 5.69685e6 0.434757
\(704\) 0 0
\(705\) −960276. −0.0727651
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.86282e7 −1.39173 −0.695867 0.718171i \(-0.744980\pi\)
−0.695867 + 0.718171i \(0.744980\pi\)
\(710\) 0 0
\(711\) −4.37703e6 −0.324718
\(712\) 0 0
\(713\) 120367. 0.00886717
\(714\) 0 0
\(715\) −999131. −0.0730899
\(716\) 0 0
\(717\) −8.59681e6 −0.624510
\(718\) 0 0
\(719\) 1.89245e7 1.36522 0.682611 0.730782i \(-0.260844\pi\)
0.682611 + 0.730782i \(0.260844\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −3.34503e6 −0.237988
\(724\) 0 0
\(725\) 9.90684e6 0.699987
\(726\) 0 0
\(727\) 1.55979e7 1.09454 0.547270 0.836956i \(-0.315667\pi\)
0.547270 + 0.836956i \(0.315667\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 2.15768e6 0.149346
\(732\) 0 0
\(733\) 8.55919e6 0.588400 0.294200 0.955744i \(-0.404947\pi\)
0.294200 + 0.955744i \(0.404947\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 653006. 0.0442842
\(738\) 0 0
\(739\) 2.83372e6 0.190873 0.0954367 0.995435i \(-0.469575\pi\)
0.0954367 + 0.995435i \(0.469575\pi\)
\(740\) 0 0
\(741\) 3.73969e6 0.250201
\(742\) 0 0
\(743\) 1.04924e7 0.697274 0.348637 0.937258i \(-0.386645\pi\)
0.348637 + 0.937258i \(0.386645\pi\)
\(744\) 0 0
\(745\) 2.97325e6 0.196264
\(746\) 0 0
\(747\) −984005. −0.0645202
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 8.66877e6 0.560864 0.280432 0.959874i \(-0.409522\pi\)
0.280432 + 0.959874i \(0.409522\pi\)
\(752\) 0 0
\(753\) 7.12578e6 0.457979
\(754\) 0 0
\(755\) −1.89346e6 −0.120890
\(756\) 0 0
\(757\) 1.08369e7 0.687332 0.343666 0.939092i \(-0.388331\pi\)
0.343666 + 0.939092i \(0.388331\pi\)
\(758\) 0 0
\(759\) 106490. 0.00670971
\(760\) 0 0
\(761\) −398694. −0.0249562 −0.0124781 0.999922i \(-0.503972\pi\)
−0.0124781 + 0.999922i \(0.503972\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1.71581e6 −0.106002
\(766\) 0 0
\(767\) 2.12645e7 1.30517
\(768\) 0 0
\(769\) 1.38915e7 0.847096 0.423548 0.905874i \(-0.360785\pi\)
0.423548 + 0.905874i \(0.360785\pi\)
\(770\) 0 0
\(771\) −2.64266e6 −0.160105
\(772\) 0 0
\(773\) −2.26688e7 −1.36452 −0.682259 0.731111i \(-0.739002\pi\)
−0.682259 + 0.731111i \(0.739002\pi\)
\(774\) 0 0
\(775\) 829887. 0.0496323
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.79929e6 −0.283356
\(780\) 0 0
\(781\) 1.09279e6 0.0641078
\(782\) 0 0
\(783\) 3.85609e6 0.224772
\(784\) 0 0
\(785\) 1.43963e7 0.833827
\(786\) 0 0
\(787\) 6.91349e6 0.397887 0.198944 0.980011i \(-0.436249\pi\)
0.198944 + 0.980011i \(0.436249\pi\)
\(788\) 0 0
\(789\) −8.99626e6 −0.514481
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1.24226e7 −0.701504
\(794\) 0 0
\(795\) −2.26539e6 −0.127123
\(796\) 0 0
\(797\) 1.94035e6 0.108202 0.0541009 0.998535i \(-0.482771\pi\)
0.0541009 + 0.998535i \(0.482771\pi\)
\(798\) 0 0
\(799\) −1.80509e6 −0.100031
\(800\) 0 0
\(801\) 7.21265e6 0.397204
\(802\) 0 0
\(803\) 500395. 0.0273857
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2.94652e6 0.159267
\(808\) 0 0
\(809\) −2.29908e7 −1.23505 −0.617524 0.786552i \(-0.711864\pi\)
−0.617524 + 0.786552i \(0.711864\pi\)
\(810\) 0 0
\(811\) 2.57027e7 1.37223 0.686116 0.727492i \(-0.259314\pi\)
0.686116 + 0.727492i \(0.259314\pi\)
\(812\) 0 0
\(813\) −6.79353e6 −0.360470
\(814\) 0 0
\(815\) 1.62016e7 0.854406
\(816\) 0 0
\(817\) −2.31032e6 −0.121092
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.47646e7 −0.764474 −0.382237 0.924064i \(-0.624846\pi\)
−0.382237 + 0.924064i \(0.624846\pi\)
\(822\) 0 0
\(823\) 9.50592e6 0.489209 0.244605 0.969623i \(-0.421342\pi\)
0.244605 + 0.969623i \(0.421342\pi\)
\(824\) 0 0
\(825\) 734207. 0.0375564
\(826\) 0 0
\(827\) 2.00621e7 1.02003 0.510014 0.860166i \(-0.329640\pi\)
0.510014 + 0.860166i \(0.329640\pi\)
\(828\) 0 0
\(829\) −1.92254e7 −0.971601 −0.485801 0.874070i \(-0.661472\pi\)
−0.485801 + 0.874070i \(0.661472\pi\)
\(830\) 0 0
\(831\) 1.65011e7 0.828914
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −1.74283e7 −0.865046
\(836\) 0 0
\(837\) 323021. 0.0159374
\(838\) 0 0
\(839\) 1.80768e7 0.886577 0.443289 0.896379i \(-0.353812\pi\)
0.443289 + 0.896379i \(0.353812\pi\)
\(840\) 0 0
\(841\) 7.46827e6 0.364108
\(842\) 0 0
\(843\) −7.43785e6 −0.360478
\(844\) 0 0
\(845\) −1.73165e6 −0.0834295
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −6.26613e6 −0.298353
\(850\) 0 0
\(851\) 2.41430e6 0.114279
\(852\) 0 0
\(853\) 1.58070e7 0.743837 0.371919 0.928265i \(-0.378700\pi\)
0.371919 + 0.928265i \(0.378700\pi\)
\(854\) 0 0
\(855\) 1.83718e6 0.0859483
\(856\) 0 0
\(857\) 1.61495e7 0.751115 0.375557 0.926799i \(-0.377451\pi\)
0.375557 + 0.926799i \(0.377451\pi\)
\(858\) 0 0
\(859\) −1.45107e6 −0.0670972 −0.0335486 0.999437i \(-0.510681\pi\)
−0.0335486 + 0.999437i \(0.510681\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.67359e7 −0.764932 −0.382466 0.923969i \(-0.624925\pi\)
−0.382466 + 0.923969i \(0.624925\pi\)
\(864\) 0 0
\(865\) −2.67701e7 −1.21649
\(866\) 0 0
\(867\) 9.55340e6 0.431629
\(868\) 0 0
\(869\) −2.35372e6 −0.105732
\(870\) 0 0
\(871\) 9.71855e6 0.434066
\(872\) 0 0
\(873\) 2.90085e6 0.128822
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.77411e7 −0.778900 −0.389450 0.921048i \(-0.627335\pi\)
−0.389450 + 0.921048i \(0.627335\pi\)
\(878\) 0 0
\(879\) 1.56853e7 0.684731
\(880\) 0 0
\(881\) −3.78264e6 −0.164193 −0.0820967 0.996624i \(-0.526162\pi\)
−0.0820967 + 0.996624i \(0.526162\pi\)
\(882\) 0 0
\(883\) −3.93853e7 −1.69993 −0.849967 0.526836i \(-0.823378\pi\)
−0.849967 + 0.526836i \(0.823378\pi\)
\(884\) 0 0
\(885\) 1.04466e7 0.448348
\(886\) 0 0
\(887\) 7.17846e6 0.306353 0.153177 0.988199i \(-0.451050\pi\)
0.153177 + 0.988199i \(0.451050\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 285779. 0.0120597
\(892\) 0 0
\(893\) 1.93279e6 0.0811064
\(894\) 0 0
\(895\) −2.14382e7 −0.894603
\(896\) 0 0
\(897\) 1.58486e6 0.0657675
\(898\) 0 0
\(899\) 2.34381e6 0.0967216
\(900\) 0 0
\(901\) −4.25840e6 −0.174757
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.73762e7 −0.705234
\(906\) 0 0
\(907\) 2.19478e7 0.885877 0.442938 0.896552i \(-0.353936\pi\)
0.442938 + 0.896552i \(0.353936\pi\)
\(908\) 0 0
\(909\) −2.50099e6 −0.100393
\(910\) 0 0
\(911\) −2.60249e7 −1.03895 −0.519474 0.854486i \(-0.673872\pi\)
−0.519474 + 0.854486i \(0.673872\pi\)
\(912\) 0 0
\(913\) −529142. −0.0210085
\(914\) 0 0
\(915\) −6.10282e6 −0.240978
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 2.18157e7 0.852078 0.426039 0.904705i \(-0.359909\pi\)
0.426039 + 0.904705i \(0.359909\pi\)
\(920\) 0 0
\(921\) −2.93327e7 −1.13947
\(922\) 0 0
\(923\) 1.62638e7 0.628374
\(924\) 0 0
\(925\) 1.66457e7 0.639657
\(926\) 0 0
\(927\) 1.68319e6 0.0643329
\(928\) 0 0
\(929\) 1.24759e7 0.474276 0.237138 0.971476i \(-0.423791\pi\)
0.237138 + 0.971476i \(0.423791\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −9.38438e6 −0.352941
\(934\) 0 0
\(935\) −922663. −0.0345155
\(936\) 0 0
\(937\) −3.37205e7 −1.25471 −0.627357 0.778732i \(-0.715863\pi\)
−0.627357 + 0.778732i \(0.715863\pi\)
\(938\) 0 0
\(939\) 1.19785e7 0.443341
\(940\) 0 0
\(941\) −2.49886e7 −0.919956 −0.459978 0.887930i \(-0.652143\pi\)
−0.459978 + 0.887930i \(0.652143\pi\)
\(942\) 0 0
\(943\) −2.03392e6 −0.0744825
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.18165e7 1.15286 0.576430 0.817146i \(-0.304445\pi\)
0.576430 + 0.817146i \(0.304445\pi\)
\(948\) 0 0
\(949\) 7.44727e6 0.268430
\(950\) 0 0
\(951\) −2.80779e6 −0.100673
\(952\) 0 0
\(953\) −3.79217e6 −0.135256 −0.0676279 0.997711i \(-0.521543\pi\)
−0.0676279 + 0.997711i \(0.521543\pi\)
\(954\) 0 0
\(955\) 1.52296e7 0.540354
\(956\) 0 0
\(957\) 2.07358e6 0.0731883
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2.84328e7 −0.993142
\(962\) 0 0
\(963\) −8.87728e6 −0.308471
\(964\) 0 0
\(965\) −1.13413e6 −0.0392052
\(966\) 0 0
\(967\) 2.32765e7 0.800482 0.400241 0.916410i \(-0.368926\pi\)
0.400241 + 0.916410i \(0.368926\pi\)
\(968\) 0 0
\(969\) 3.45347e6 0.118154
\(970\) 0 0
\(971\) −2.66165e7 −0.905946 −0.452973 0.891524i \(-0.649637\pi\)
−0.452973 + 0.891524i \(0.649637\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 1.09270e7 0.368121
\(976\) 0 0
\(977\) −1.55013e7 −0.519555 −0.259777 0.965669i \(-0.583649\pi\)
−0.259777 + 0.965669i \(0.583649\pi\)
\(978\) 0 0
\(979\) 3.87855e6 0.129334
\(980\) 0 0
\(981\) 1.54586e7 0.512857
\(982\) 0 0
\(983\) 4.61036e7 1.52178 0.760889 0.648882i \(-0.224763\pi\)
0.760889 + 0.648882i \(0.224763\pi\)
\(984\) 0 0
\(985\) −1.00219e7 −0.329125
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −979104. −0.0318301
\(990\) 0 0
\(991\) 1.82281e7 0.589599 0.294799 0.955559i \(-0.404747\pi\)
0.294799 + 0.955559i \(0.404747\pi\)
\(992\) 0 0
\(993\) −2.31918e7 −0.746384
\(994\) 0 0
\(995\) −1.87027e7 −0.598889
\(996\) 0 0
\(997\) 8.74841e6 0.278735 0.139367 0.990241i \(-0.455493\pi\)
0.139367 + 0.990241i \(0.455493\pi\)
\(998\) 0 0
\(999\) 6.47908e6 0.205400
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.6.a.m.1.1 4
7.2 even 3 588.6.i.q.361.4 8
7.3 odd 6 588.6.i.p.373.1 8
7.4 even 3 588.6.i.q.373.4 8
7.5 odd 6 588.6.i.p.361.1 8
7.6 odd 2 588.6.a.o.1.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.6.a.m.1.1 4 1.1 even 1 trivial
588.6.a.o.1.4 yes 4 7.6 odd 2
588.6.i.p.361.1 8 7.5 odd 6
588.6.i.p.373.1 8 7.3 odd 6
588.6.i.q.361.4 8 7.2 even 3
588.6.i.q.373.4 8 7.4 even 3