Properties

Label 588.6.i
Level $588$
Weight $6$
Character orbit 588.i
Rep. character $\chi_{588}(361,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $66$
Newform subspaces $17$
Sturm bound $672$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 588.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 17 \)
Sturm bound: \(672\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(588, [\chi])\).

Total New Old
Modular forms 1168 66 1102
Cusp forms 1072 66 1006
Eisenstein series 96 0 96

Trace form

\( 66 q - 9 q^{3} - 22 q^{5} - 2673 q^{9} + 178 q^{11} + 314 q^{13} + 396 q^{15} - 320 q^{17} - 3217 q^{19} + 2412 q^{23} - 18115 q^{25} + 1458 q^{27} + 22432 q^{29} - 4705 q^{31} - 6714 q^{33} - 2629 q^{37}+ \cdots - 28836 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(588, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
588.6.i.a 588.i 7.c $2$ $94.306$ \(\Q(\sqrt{-3}) \) None 588.6.a.a \(0\) \(-9\) \(-68\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-9+9\zeta_{6})q^{3}-68\zeta_{6}q^{5}-3^{4}\zeta_{6}q^{9}+\cdots\)
588.6.i.b 588.i 7.c $2$ $94.306$ \(\Q(\sqrt{-3}) \) None 84.6.a.a \(0\) \(-9\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-9+9\zeta_{6})q^{3}+6\zeta_{6}q^{5}-3^{4}\zeta_{6}q^{9}+\cdots\)
588.6.i.c 588.i 7.c $2$ $94.306$ \(\Q(\sqrt{-3}) \) None 84.6.a.b \(0\) \(-9\) \(34\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-9+9\zeta_{6})q^{3}+34\zeta_{6}q^{5}-3^{4}\zeta_{6}q^{9}+\cdots\)
588.6.i.d 588.i 7.c $2$ $94.306$ \(\Q(\sqrt{-3}) \) None 84.6.i.a \(0\) \(9\) \(-69\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(9-9\zeta_{6})q^{3}-69\zeta_{6}q^{5}-3^{4}\zeta_{6}q^{9}+\cdots\)
588.6.i.e 588.i 7.c $2$ $94.306$ \(\Q(\sqrt{-3}) \) None 84.6.a.b \(0\) \(9\) \(-34\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(9-9\zeta_{6})q^{3}-34\zeta_{6}q^{5}-3^{4}\zeta_{6}q^{9}+\cdots\)
588.6.i.f 588.i 7.c $2$ $94.306$ \(\Q(\sqrt{-3}) \) None 84.6.a.a \(0\) \(9\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(9-9\zeta_{6})q^{3}-6\zeta_{6}q^{5}-3^{4}\zeta_{6}q^{9}+\cdots\)
588.6.i.g 588.i 7.c $2$ $94.306$ \(\Q(\sqrt{-3}) \) None 588.6.a.a \(0\) \(9\) \(68\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(9-9\zeta_{6})q^{3}+68\zeta_{6}q^{5}-3^{4}\zeta_{6}q^{9}+\cdots\)
588.6.i.h 588.i 7.c $4$ $94.306$ \(\Q(\sqrt{-3}, \sqrt{505})\) None 84.6.a.d \(0\) \(-18\) \(-78\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-9+9\beta _{1})q^{3}+(-39\beta _{1}-\beta _{2})q^{5}+\cdots\)
588.6.i.i 588.i 7.c $4$ $94.306$ \(\Q(\sqrt{-3}, \sqrt{5569})\) None 84.6.a.c \(0\) \(-18\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-9\beta _{1}q^{3}+(-3+3\beta _{1}+\beta _{2}+\beta _{3})q^{5}+\cdots\)
588.6.i.j 588.i 7.c $4$ $94.306$ \(\Q(\sqrt{-3}, \sqrt{2641})\) None 588.6.a.i \(0\) \(-18\) \(90\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-9+9\beta _{1})q^{3}+(45\beta _{1}+\beta _{2})q^{5}+\cdots\)
588.6.i.k 588.i 7.c $4$ $94.306$ \(\Q(\sqrt{-3}, \sqrt{2641})\) None 588.6.a.i \(0\) \(18\) \(-90\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(9-9\beta _{1})q^{3}+(-45\beta _{1}-\beta _{2})q^{5}+\cdots\)
588.6.i.l 588.i 7.c $4$ $94.306$ \(\Q(\sqrt{-3}, \sqrt{5569})\) None 84.6.a.c \(0\) \(18\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(9-9\beta _{1})q^{3}+(3\beta _{1}+\beta _{2})q^{5}-3^{4}\beta _{1}q^{9}+\cdots\)
588.6.i.m 588.i 7.c $4$ $94.306$ \(\Q(\sqrt{-3}, \sqrt{7081})\) None 84.6.i.b \(0\) \(18\) \(47\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(9-9\beta _{2})q^{3}+(-\beta _{1}+24\beta _{2})q^{5}+\cdots\)
588.6.i.n 588.i 7.c $4$ $94.306$ \(\Q(\sqrt{-3}, \sqrt{505})\) None 84.6.a.d \(0\) \(18\) \(78\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(9-9\beta _{1})q^{3}+(39\beta _{1}+\beta _{2})q^{5}-3^{4}\beta _{1}q^{9}+\cdots\)
588.6.i.o 588.i 7.c $8$ $94.306$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 84.6.i.c \(0\) \(-36\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-9+9\beta _{1})q^{3}+(-\beta _{3}+\beta _{4})q^{5}+\cdots\)
588.6.i.p 588.i 7.c $8$ $94.306$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 588.6.a.m \(0\) \(-36\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-9+9\beta _{1})q^{3}+(-\beta _{2}-2\beta _{3}-2\beta _{4}+\cdots)q^{5}+\cdots\)
588.6.i.q 588.i 7.c $8$ $94.306$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 588.6.a.m \(0\) \(36\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(9-9\beta _{1})q^{3}+(\beta _{2}+2\beta _{3}+2\beta _{4}+\beta _{5}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(588, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(588, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(294, [\chi])\)\(^{\oplus 2}\)