L(s) = 1 | + (−2.29 + 1.92i)3-s + (1.16 + 0.423i)5-s + (−1.37 − 0.501i)7-s + (1.03 − 5.84i)9-s + (3.02 − 5.23i)11-s + (−0.652 − 3.70i)13-s + (−3.48 + 1.26i)15-s + (−0.936 + 5.30i)17-s + (2.77 − 2.32i)19-s + (4.12 − 1.50i)21-s + (2.92 + 5.07i)23-s + (−2.65 − 2.22i)25-s + (4.39 + 7.61i)27-s + (2.60 − 4.50i)29-s + 2.33·31-s + ⋯ |
L(s) = 1 | + (−1.32 + 1.10i)3-s + (0.520 + 0.189i)5-s + (−0.521 − 0.189i)7-s + (0.343 − 1.94i)9-s + (0.912 − 1.57i)11-s + (−0.180 − 1.02i)13-s + (−0.899 + 0.327i)15-s + (−0.227 + 1.28i)17-s + (0.635 − 0.533i)19-s + (0.899 − 0.327i)21-s + (0.610 + 1.05i)23-s + (−0.530 − 0.445i)25-s + (0.845 + 1.46i)27-s + (0.483 − 0.836i)29-s + 0.419·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0521i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 + 0.0521i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.937750 - 0.0244601i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.937750 - 0.0244601i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 37 | \( 1 + (-5.43 - 2.73i)T \) |
good | 3 | \( 1 + (2.29 - 1.92i)T + (0.520 - 2.95i)T^{2} \) |
| 5 | \( 1 + (-1.16 - 0.423i)T + (3.83 + 3.21i)T^{2} \) |
| 7 | \( 1 + (1.37 + 0.501i)T + (5.36 + 4.49i)T^{2} \) |
| 11 | \( 1 + (-3.02 + 5.23i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (0.652 + 3.70i)T + (-12.2 + 4.44i)T^{2} \) |
| 17 | \( 1 + (0.936 - 5.30i)T + (-15.9 - 5.81i)T^{2} \) |
| 19 | \( 1 + (-2.77 + 2.32i)T + (3.29 - 18.7i)T^{2} \) |
| 23 | \( 1 + (-2.92 - 5.07i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.60 + 4.50i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 2.33T + 31T^{2} \) |
| 41 | \( 1 + (-0.173 - 0.983i)T + (-38.5 + 14.0i)T^{2} \) |
| 43 | \( 1 - 5.45T + 43T^{2} \) |
| 47 | \( 1 + (3.81 + 6.60i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-8.54 + 3.11i)T + (40.6 - 34.0i)T^{2} \) |
| 59 | \( 1 + (7.89 - 2.87i)T + (45.1 - 37.9i)T^{2} \) |
| 61 | \( 1 + (-0.810 - 4.59i)T + (-57.3 + 20.8i)T^{2} \) |
| 67 | \( 1 + (0.757 + 0.275i)T + (51.3 + 43.0i)T^{2} \) |
| 71 | \( 1 + (-10.6 + 8.93i)T + (12.3 - 69.9i)T^{2} \) |
| 73 | \( 1 - 7.11T + 73T^{2} \) |
| 79 | \( 1 + (-6.61 - 2.40i)T + (60.5 + 50.7i)T^{2} \) |
| 83 | \( 1 + (-0.942 + 5.34i)T + (-77.9 - 28.3i)T^{2} \) |
| 89 | \( 1 + (5.21 - 1.89i)T + (68.1 - 57.2i)T^{2} \) |
| 97 | \( 1 + (5.35 + 9.28i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.68045797311217385263049085132, −9.957426636600081931997909105542, −9.308289036713100192202328238029, −8.164020246849354251016942201633, −6.56732965896653573965797679180, −6.00806931023344353080360595884, −5.35450682896020785427402767180, −4.06394832029989119243962835385, −3.20805818348863545423541603435, −0.74293730252705299474327550520,
1.21973427834495324668188788907, 2.34696036094569442975761936886, 4.45340553173839751552370635283, 5.27655715075896003541215605383, 6.42382327642804474640034119578, 6.83278053304944233501430132060, 7.61216681330711702648745984948, 9.272366426728922542824655465052, 9.677747425810671126369641901567, 10.93353690446046518461843682823