L(s) = 1 | + (0.0912 + 1.41i)2-s + (0.707 − 0.707i)3-s + (−1.98 + 0.257i)4-s + (1.32 + 1.80i)5-s + (1.06 + 0.933i)6-s + (−1.86 − 1.86i)7-s + (−0.544 − 2.77i)8-s − 1.00i·9-s + (−2.42 + 2.02i)10-s + 0.728i·11-s + (−1.22 + 1.58i)12-s + (−3.12 − 3.12i)13-s + (2.46 − 2.80i)14-s + (2.20 + 0.342i)15-s + (3.86 − 1.02i)16-s + (1.12 − 1.12i)17-s + ⋯ |
L(s) = 1 | + (0.0645 + 0.997i)2-s + (0.408 − 0.408i)3-s + (−0.991 + 0.128i)4-s + (0.590 + 0.807i)5-s + (0.433 + 0.381i)6-s + (−0.705 − 0.705i)7-s + (−0.192 − 0.981i)8-s − 0.333i·9-s + (−0.767 + 0.641i)10-s + 0.219i·11-s + (−0.352 + 0.457i)12-s + (−0.866 − 0.866i)13-s + (0.658 − 0.749i)14-s + (0.570 + 0.0885i)15-s + (0.966 − 0.255i)16-s + (0.272 − 0.272i)17-s + ⋯ |
Λ(s)=(=(60s/2ΓC(s)L(s)(0.546−0.837i)Λ(2−s)
Λ(s)=(=(60s/2ΓC(s+1/2)L(s)(0.546−0.837i)Λ(1−s)
Degree: |
2 |
Conductor: |
60
= 22⋅3⋅5
|
Sign: |
0.546−0.837i
|
Analytic conductor: |
0.479102 |
Root analytic conductor: |
0.692172 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ60(43,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 60, ( :1/2), 0.546−0.837i)
|
Particular Values
L(1) |
≈ |
0.817228+0.442446i |
L(21) |
≈ |
0.817228+0.442446i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.0912−1.41i)T |
| 3 | 1+(−0.707+0.707i)T |
| 5 | 1+(−1.32−1.80i)T |
good | 7 | 1+(1.86+1.86i)T+7iT2 |
| 11 | 1−0.728iT−11T2 |
| 13 | 1+(3.12+3.12i)T+13iT2 |
| 17 | 1+(−1.12+1.12i)T−17iT2 |
| 19 | 1−3.73T+19T2 |
| 23 | 1+(5.83−5.83i)T−23iT2 |
| 29 | 1−2.64iT−29T2 |
| 31 | 1−6.01iT−31T2 |
| 37 | 1+(−3.12+3.12i)T−37iT2 |
| 41 | 1+4.24T+41T2 |
| 43 | 1+(−5.10+5.10i)T−43iT2 |
| 47 | 1+(−2.09−2.09i)T+47iT2 |
| 53 | 1+(−0.484−0.484i)T+53iT2 |
| 59 | 1−4.92T+59T2 |
| 61 | 1−2.31T+61T2 |
| 67 | 1+(5.10+5.10i)T+67iT2 |
| 71 | 1+13.1iT−71T2 |
| 73 | 1+(−3.96−3.96i)T+73iT2 |
| 79 | 1+7.11T+79T2 |
| 83 | 1+(−3.55+3.55i)T−83iT2 |
| 89 | 1−1.03iT−89T2 |
| 97 | 1+(12.5−12.5i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.16712187851486138980539456248, −14.12514395374100963679250615448, −13.52446230718183543050247813021, −12.34747804584616398179878238383, −10.23931636111382693776655762026, −9.474051717135374842054123744816, −7.67344560209680778661792403648, −6.96363737989232728965577444062, −5.57950822027377763077666186519, −3.37130257409424508583511936349,
2.45183576347053094532963864216, 4.35002774704167954760368500884, 5.80193236186153991877192141527, 8.347483012465051057578954155923, 9.456896137864312631782028417290, 9.978912696771910400214745553378, 11.74302201500702253236755527125, 12.60571447260429012613425372687, 13.66455272458973499926049386285, 14.61475605772709772827622503276