Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [60,2,Mod(7,60)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(60, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("60.7");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 60.j (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 12.0.426337261060096.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 |
|
−1.41127 | + | 0.0912546i | −0.707107 | − | 0.707107i | 1.98335 | − | 0.257569i | 1.32001 | − | 1.80487i | 1.06244 | + | 0.933389i | 1.86678 | − | 1.86678i | −2.77552 | + | 0.544488i | 1.00000i | −1.69819 | + | 2.66761i | ||||||||||||||||||||||||||||||||||||||
7.2 | −1.19252 | + | 0.760198i | 0.707107 | + | 0.707107i | 0.844199 | − | 1.81310i | 0.432320 | + | 2.19388i | −1.38078 | − | 0.305697i | −0.611393 | + | 0.611393i | 0.371591 | + | 2.80391i | 1.00000i | −2.18333 | − | 2.28759i | |||||||||||||||||||||||||||||||||||||||
7.3 | 0.0912546 | − | 1.41127i | 0.707107 | + | 0.707107i | −1.98335 | − | 0.257569i | 1.32001 | − | 1.80487i | 1.06244 | − | 0.933389i | −1.86678 | + | 1.86678i | −0.544488 | + | 2.77552i | 1.00000i | −2.42670 | − | 2.02759i | |||||||||||||||||||||||||||||||||||||||
7.4 | 0.394157 | + | 1.35818i | 0.707107 | + | 0.707107i | −1.68928 | + | 1.07067i | −1.75233 | − | 1.38900i | −0.681664 | + | 1.23909i | 2.47817 | − | 2.47817i | −2.12000 | − | 1.87233i | 1.00000i | 1.19582 | − | 2.92746i | |||||||||||||||||||||||||||||||||||||||
7.5 | 0.760198 | − | 1.19252i | −0.707107 | − | 0.707107i | −0.844199 | − | 1.81310i | 0.432320 | + | 2.19388i | −1.38078 | + | 0.305697i | 0.611393 | − | 0.611393i | −2.80391 | − | 0.371591i | 1.00000i | 2.94489 | + | 1.15223i | |||||||||||||||||||||||||||||||||||||||
7.6 | 1.35818 | + | 0.394157i | −0.707107 | − | 0.707107i | 1.68928 | + | 1.07067i | −1.75233 | − | 1.38900i | −0.681664 | − | 1.23909i | −2.47817 | + | 2.47817i | 1.87233 | + | 2.12000i | 1.00000i | −1.83249 | − | 2.57720i | |||||||||||||||||||||||||||||||||||||||
43.1 | −1.41127 | − | 0.0912546i | −0.707107 | + | 0.707107i | 1.98335 | + | 0.257569i | 1.32001 | + | 1.80487i | 1.06244 | − | 0.933389i | 1.86678 | + | 1.86678i | −2.77552 | − | 0.544488i | − | 1.00000i | −1.69819 | − | 2.66761i | ||||||||||||||||||||||||||||||||||||||
43.2 | −1.19252 | − | 0.760198i | 0.707107 | − | 0.707107i | 0.844199 | + | 1.81310i | 0.432320 | − | 2.19388i | −1.38078 | + | 0.305697i | −0.611393 | − | 0.611393i | 0.371591 | − | 2.80391i | − | 1.00000i | −2.18333 | + | 2.28759i | ||||||||||||||||||||||||||||||||||||||
43.3 | 0.0912546 | + | 1.41127i | 0.707107 | − | 0.707107i | −1.98335 | + | 0.257569i | 1.32001 | + | 1.80487i | 1.06244 | + | 0.933389i | −1.86678 | − | 1.86678i | −0.544488 | − | 2.77552i | − | 1.00000i | −2.42670 | + | 2.02759i | ||||||||||||||||||||||||||||||||||||||
43.4 | 0.394157 | − | 1.35818i | 0.707107 | − | 0.707107i | −1.68928 | − | 1.07067i | −1.75233 | + | 1.38900i | −0.681664 | − | 1.23909i | 2.47817 | + | 2.47817i | −2.12000 | + | 1.87233i | − | 1.00000i | 1.19582 | + | 2.92746i | ||||||||||||||||||||||||||||||||||||||
43.5 | 0.760198 | + | 1.19252i | −0.707107 | + | 0.707107i | −0.844199 | + | 1.81310i | 0.432320 | − | 2.19388i | −1.38078 | − | 0.305697i | 0.611393 | + | 0.611393i | −2.80391 | + | 0.371591i | − | 1.00000i | 2.94489 | − | 1.15223i | ||||||||||||||||||||||||||||||||||||||
43.6 | 1.35818 | − | 0.394157i | −0.707107 | + | 0.707107i | 1.68928 | − | 1.07067i | −1.75233 | + | 1.38900i | −0.681664 | + | 1.23909i | −2.47817 | − | 2.47817i | 1.87233 | − | 2.12000i | − | 1.00000i | −1.83249 | + | 2.57720i | ||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
20.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 60.2.j.a | ✓ | 12 |
3.b | odd | 2 | 1 | 180.2.k.e | 12 | ||
4.b | odd | 2 | 1 | inner | 60.2.j.a | ✓ | 12 |
5.b | even | 2 | 1 | 300.2.j.d | 12 | ||
5.c | odd | 4 | 1 | inner | 60.2.j.a | ✓ | 12 |
5.c | odd | 4 | 1 | 300.2.j.d | 12 | ||
8.b | even | 2 | 1 | 960.2.w.g | 12 | ||
8.d | odd | 2 | 1 | 960.2.w.g | 12 | ||
12.b | even | 2 | 1 | 180.2.k.e | 12 | ||
15.d | odd | 2 | 1 | 900.2.k.n | 12 | ||
15.e | even | 4 | 1 | 180.2.k.e | 12 | ||
15.e | even | 4 | 1 | 900.2.k.n | 12 | ||
20.d | odd | 2 | 1 | 300.2.j.d | 12 | ||
20.e | even | 4 | 1 | inner | 60.2.j.a | ✓ | 12 |
20.e | even | 4 | 1 | 300.2.j.d | 12 | ||
40.i | odd | 4 | 1 | 960.2.w.g | 12 | ||
40.k | even | 4 | 1 | 960.2.w.g | 12 | ||
60.h | even | 2 | 1 | 900.2.k.n | 12 | ||
60.l | odd | 4 | 1 | 180.2.k.e | 12 | ||
60.l | odd | 4 | 1 | 900.2.k.n | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
60.2.j.a | ✓ | 12 | 1.a | even | 1 | 1 | trivial |
60.2.j.a | ✓ | 12 | 4.b | odd | 2 | 1 | inner |
60.2.j.a | ✓ | 12 | 5.c | odd | 4 | 1 | inner |
60.2.j.a | ✓ | 12 | 20.e | even | 4 | 1 | inner |
180.2.k.e | 12 | 3.b | odd | 2 | 1 | ||
180.2.k.e | 12 | 12.b | even | 2 | 1 | ||
180.2.k.e | 12 | 15.e | even | 4 | 1 | ||
180.2.k.e | 12 | 60.l | odd | 4 | 1 | ||
300.2.j.d | 12 | 5.b | even | 2 | 1 | ||
300.2.j.d | 12 | 5.c | odd | 4 | 1 | ||
300.2.j.d | 12 | 20.d | odd | 2 | 1 | ||
300.2.j.d | 12 | 20.e | even | 4 | 1 | ||
900.2.k.n | 12 | 15.d | odd | 2 | 1 | ||
900.2.k.n | 12 | 15.e | even | 4 | 1 | ||
900.2.k.n | 12 | 60.h | even | 2 | 1 | ||
900.2.k.n | 12 | 60.l | odd | 4 | 1 | ||
960.2.w.g | 12 | 8.b | even | 2 | 1 | ||
960.2.w.g | 12 | 8.d | odd | 2 | 1 | ||
960.2.w.g | 12 | 40.i | odd | 4 | 1 | ||
960.2.w.g | 12 | 40.k | even | 4 | 1 |
Hecke kernels
This newform subspace is the entire newspace .