Properties

Label 60.2.j.a
Level 6060
Weight 22
Character orbit 60.j
Analytic conductor 0.4790.479
Analytic rank 00
Dimension 1212
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [60,2,Mod(7,60)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(60, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("60.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 60=2235 60 = 2^{2} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 60.j (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.4791024121280.479102412128
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(i)\Q(i)
Coefficient field: 12.0.426337261060096.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x124x93x8+4x7+8x6+8x512x432x3+64 x^{12} - 4x^{9} - 3x^{8} + 4x^{7} + 8x^{6} + 8x^{5} - 12x^{4} - 32x^{3} + 64 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ6q2β2q3+(β7+β4+β2)q4+(β8+β6+β4)q5β1q6+(β9+β5++β1)q7++(β11β10++2β3)q99+O(q100) q - \beta_{6} q^{2} - \beta_{2} q^{3} + ( - \beta_{7} + \beta_{4} + \beta_{2}) q^{4} + ( - \beta_{8} + \beta_{6} + \cdots - \beta_{4}) q^{5} - \beta_1 q^{6} + ( - \beta_{9} + \beta_{5} + \cdots + \beta_1) q^{7}+ \cdots + ( - \beta_{11} - \beta_{10} + \cdots + 2 \beta_{3}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q4q612q88q108q124q13+12q1620q17+20q20+12q2220q25+16q264q28+8q30+20q32+8q33+4q36+4q37+16q38++24q98+O(q100) 12 q - 4 q^{6} - 12 q^{8} - 8 q^{10} - 8 q^{12} - 4 q^{13} + 12 q^{16} - 20 q^{17} + 20 q^{20} + 12 q^{22} - 20 q^{25} + 16 q^{26} - 4 q^{28} + 8 q^{30} + 20 q^{32} + 8 q^{33} + 4 q^{36} + 4 q^{37} + 16 q^{38}+ \cdots + 24 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x124x93x8+4x7+8x6+8x512x432x3+64 x^{12} - 4x^{9} - 3x^{8} + 4x^{7} + 8x^{6} + 8x^{5} - 12x^{4} - 32x^{3} + 64 : Copy content Toggle raw display

β1\beta_{1}== (ν10ν94ν8+2ν7+3ν65ν524ν42ν3+8ν2+24ν+48)/80 ( -\nu^{10} - \nu^{9} - 4\nu^{8} + 2\nu^{7} + 3\nu^{6} - 5\nu^{5} - 24\nu^{4} - 2\nu^{3} + 8\nu^{2} + 24\nu + 48 ) / 80 Copy content Toggle raw display
β2\beta_{2}== (ν11+ν10+4ν92ν83ν7+5ν6+24ν5+2ν48ν324ν248ν)/160 ( \nu^{11} + \nu^{10} + 4\nu^{9} - 2\nu^{8} - 3\nu^{7} + 5\nu^{6} + 24\nu^{5} + 2\nu^{4} - 8\nu^{3} - 24\nu^{2} - 48\nu ) / 160 Copy content Toggle raw display
β3\beta_{3}== (ν10+9ν9+6ν8+2ν717ν635ν5+26ν4+38ν3+192)/80 ( - \nu^{10} + 9 \nu^{9} + 6 \nu^{8} + 2 \nu^{7} - 17 \nu^{6} - 35 \nu^{5} + 26 \nu^{4} + 38 \nu^{3} + \cdots - 192 ) / 80 Copy content Toggle raw display
β4\beta_{4}== (ν11ν10+ν9+2ν8+13ν75ν619ν522ν4++88ν)/80 ( - \nu^{11} - \nu^{10} + \nu^{9} + 2 \nu^{8} + 13 \nu^{7} - 5 \nu^{6} - 19 \nu^{5} - 22 \nu^{4} + \cdots + 88 \nu ) / 80 Copy content Toggle raw display
β5\beta_{5}== (ν11+4ν10+2ν9+ν7+16ν66ν5+4ν4+8ν348ν2160ν64)/160 ( \nu^{11} + 4\nu^{10} + 2\nu^{9} + \nu^{7} + 16\nu^{6} - 6\nu^{5} + 4\nu^{4} + 8\nu^{3} - 48\nu^{2} - 160\nu - 64 ) / 160 Copy content Toggle raw display
β6\beta_{6}== (ν11+4ν8+3ν74ν68ν58ν4+12ν3+32ν2)/32 ( -\nu^{11} + 4\nu^{8} + 3\nu^{7} - 4\nu^{6} - 8\nu^{5} - 8\nu^{4} + 12\nu^{3} + 32\nu^{2} ) / 32 Copy content Toggle raw display
β7\beta_{7}== (ν11+9ν10+6ν9+2ν817ν735ν6+26ν5+192ν)/160 ( - \nu^{11} + 9 \nu^{10} + 6 \nu^{9} + 2 \nu^{8} - 17 \nu^{7} - 35 \nu^{6} + 26 \nu^{5} + \cdots - 192 \nu ) / 160 Copy content Toggle raw display
β8\beta_{8}== (3ν11+ν104ν85ν7+ν6+12ν5+8ν4+12ν336ν216ν64)/80 ( 3\nu^{11} + \nu^{10} - 4\nu^{8} - 5\nu^{7} + \nu^{6} + 12\nu^{5} + 8\nu^{4} + 12\nu^{3} - 36\nu^{2} - 16\nu - 64 ) / 80 Copy content Toggle raw display
β9\beta_{9}== (9ν11+6ν102ν920ν831ν7+34ν6+46ν5+16ν4++64)/160 ( 9 \nu^{11} + 6 \nu^{10} - 2 \nu^{9} - 20 \nu^{8} - 31 \nu^{7} + 34 \nu^{6} + 46 \nu^{5} + 16 \nu^{4} + \cdots + 64 ) / 160 Copy content Toggle raw display
β10\beta_{10}== (ν113ν10ν9+4ν8+7ν7+ν69ν520ν4++16)/40 ( - \nu^{11} - 3 \nu^{10} - \nu^{9} + 4 \nu^{8} + 7 \nu^{7} + \nu^{6} - 9 \nu^{5} - 20 \nu^{4} + \cdots + 16 ) / 40 Copy content Toggle raw display
β11\beta_{11}== (11ν11+6ν10+14ν912ν853ν7+10ν6+14ν5+112ν4+320)/160 ( 11 \nu^{11} + 6 \nu^{10} + 14 \nu^{9} - 12 \nu^{8} - 53 \nu^{7} + 10 \nu^{6} + 14 \nu^{5} + 112 \nu^{4} + \cdots - 320 ) / 160 Copy content Toggle raw display
ν\nu== (β11β9+β4β3)/2 ( \beta_{11} - \beta_{9} + \beta_{4} - \beta_{3} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β112β10+β92β7+2β62β5β4+β3+2β2)/2 ( -\beta_{11} - 2\beta_{10} + \beta_{9} - 2\beta_{7} + 2\beta_{6} - 2\beta_{5} - \beta_{4} + \beta_{3} + 2\beta_{2} ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (β113β9+2β8+2β5β4β3+2β1+2)/2 ( \beta_{11} - 3\beta_{9} + 2\beta_{8} + 2\beta_{5} - \beta_{4} - \beta_{3} + 2\beta _1 + 2 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (β112β10β92β72β6β4+β32β24β1+4)/2 ( -\beta_{11} - 2\beta_{10} - \beta_{9} - 2\beta_{7} - 2\beta_{6} - \beta_{4} + \beta_{3} - 2\beta_{2} - 4\beta _1 + 4 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (β11β9+2β82β5β4β3+8β22β12)/2 ( -\beta_{11} - \beta_{9} + 2\beta_{8} - 2\beta_{5} - \beta_{4} - \beta_{3} + 8\beta_{2} - 2\beta _1 - 2 ) / 2 Copy content Toggle raw display
ν6\nu^{6}== (3β112β103β94β86β7+2β6+6β5++6β2)/2 ( 3 \beta_{11} - 2 \beta_{10} - 3 \beta_{9} - 4 \beta_{8} - 6 \beta_{7} + 2 \beta_{6} + 6 \beta_{5} + \cdots + 6 \beta_{2} ) / 2 Copy content Toggle raw display
ν7\nu^{7}== (5β115β9+10β88β6+10β5+5β4+β36β1+10)/2 ( -5\beta_{11} - 5\beta_{9} + 10\beta_{8} - 8\beta_{6} + 10\beta_{5} + 5\beta_{4} + \beta_{3} - 6\beta _1 + 10 ) / 2 Copy content Toggle raw display
ν8\nu^{8}== (5β11+10β10+5β9+2β7+10β6+5β45β3++4)/2 ( 5 \beta_{11} + 10 \beta_{10} + 5 \beta_{9} + 2 \beta_{7} + 10 \beta_{6} + 5 \beta_{4} - 5 \beta_{3} + \cdots + 4 ) / 2 Copy content Toggle raw display
ν9\nu^{9}== (9β117β910β8+2β5+9β4+β3+40β2+10β1+10)/2 ( 9\beta_{11} - 7\beta_{9} - 10\beta_{8} + 2\beta_{5} + 9\beta_{4} + \beta_{3} + 40\beta_{2} + 10\beta _1 + 10 ) / 2 Copy content Toggle raw display
ν10\nu^{10}== (13β1114β1013β9+4β8+6β7+14β6+6β2)/2 ( 13 \beta_{11} - 14 \beta_{10} - 13 \beta_{9} + 4 \beta_{8} + 6 \beta_{7} + 14 \beta_{6} + \cdots - 6 \beta_{2} ) / 2 Copy content Toggle raw display
ν11\nu^{11}== (11β11+29β9+54β816β7+24β618β5+11β4++54)/2 ( - 11 \beta_{11} + 29 \beta_{9} + 54 \beta_{8} - 16 \beta_{7} + 24 \beta_{6} - 18 \beta_{5} + 11 \beta_{4} + \cdots + 54 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/60Z)×\left(\mathbb{Z}/60\mathbb{Z}\right)^\times.

nn 3131 3737 4141
χ(n)\chi(n) 1-1 β8\beta_{8} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
7.1
1.41127 + 0.0912546i
1.19252 + 0.760198i
−0.0912546 1.41127i
−0.394157 + 1.35818i
−0.760198 1.19252i
−1.35818 + 0.394157i
1.41127 0.0912546i
1.19252 0.760198i
−0.0912546 + 1.41127i
−0.394157 1.35818i
−0.760198 + 1.19252i
−1.35818 0.394157i
−1.41127 + 0.0912546i −0.707107 0.707107i 1.98335 0.257569i 1.32001 1.80487i 1.06244 + 0.933389i 1.86678 1.86678i −2.77552 + 0.544488i 1.00000i −1.69819 + 2.66761i
7.2 −1.19252 + 0.760198i 0.707107 + 0.707107i 0.844199 1.81310i 0.432320 + 2.19388i −1.38078 0.305697i −0.611393 + 0.611393i 0.371591 + 2.80391i 1.00000i −2.18333 2.28759i
7.3 0.0912546 1.41127i 0.707107 + 0.707107i −1.98335 0.257569i 1.32001 1.80487i 1.06244 0.933389i −1.86678 + 1.86678i −0.544488 + 2.77552i 1.00000i −2.42670 2.02759i
7.4 0.394157 + 1.35818i 0.707107 + 0.707107i −1.68928 + 1.07067i −1.75233 1.38900i −0.681664 + 1.23909i 2.47817 2.47817i −2.12000 1.87233i 1.00000i 1.19582 2.92746i
7.5 0.760198 1.19252i −0.707107 0.707107i −0.844199 1.81310i 0.432320 + 2.19388i −1.38078 + 0.305697i 0.611393 0.611393i −2.80391 0.371591i 1.00000i 2.94489 + 1.15223i
7.6 1.35818 + 0.394157i −0.707107 0.707107i 1.68928 + 1.07067i −1.75233 1.38900i −0.681664 1.23909i −2.47817 + 2.47817i 1.87233 + 2.12000i 1.00000i −1.83249 2.57720i
43.1 −1.41127 0.0912546i −0.707107 + 0.707107i 1.98335 + 0.257569i 1.32001 + 1.80487i 1.06244 0.933389i 1.86678 + 1.86678i −2.77552 0.544488i 1.00000i −1.69819 2.66761i
43.2 −1.19252 0.760198i 0.707107 0.707107i 0.844199 + 1.81310i 0.432320 2.19388i −1.38078 + 0.305697i −0.611393 0.611393i 0.371591 2.80391i 1.00000i −2.18333 + 2.28759i
43.3 0.0912546 + 1.41127i 0.707107 0.707107i −1.98335 + 0.257569i 1.32001 + 1.80487i 1.06244 + 0.933389i −1.86678 1.86678i −0.544488 2.77552i 1.00000i −2.42670 + 2.02759i
43.4 0.394157 1.35818i 0.707107 0.707107i −1.68928 1.07067i −1.75233 + 1.38900i −0.681664 1.23909i 2.47817 + 2.47817i −2.12000 + 1.87233i 1.00000i 1.19582 + 2.92746i
43.5 0.760198 + 1.19252i −0.707107 + 0.707107i −0.844199 + 1.81310i 0.432320 2.19388i −1.38078 0.305697i 0.611393 + 0.611393i −2.80391 + 0.371591i 1.00000i 2.94489 1.15223i
43.6 1.35818 0.394157i −0.707107 + 0.707107i 1.68928 1.07067i −1.75233 + 1.38900i −0.681664 + 1.23909i −2.47817 2.47817i 1.87233 2.12000i 1.00000i −1.83249 + 2.57720i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 7.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.c odd 4 1 inner
20.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 60.2.j.a 12
3.b odd 2 1 180.2.k.e 12
4.b odd 2 1 inner 60.2.j.a 12
5.b even 2 1 300.2.j.d 12
5.c odd 4 1 inner 60.2.j.a 12
5.c odd 4 1 300.2.j.d 12
8.b even 2 1 960.2.w.g 12
8.d odd 2 1 960.2.w.g 12
12.b even 2 1 180.2.k.e 12
15.d odd 2 1 900.2.k.n 12
15.e even 4 1 180.2.k.e 12
15.e even 4 1 900.2.k.n 12
20.d odd 2 1 300.2.j.d 12
20.e even 4 1 inner 60.2.j.a 12
20.e even 4 1 300.2.j.d 12
40.i odd 4 1 960.2.w.g 12
40.k even 4 1 960.2.w.g 12
60.h even 2 1 900.2.k.n 12
60.l odd 4 1 180.2.k.e 12
60.l odd 4 1 900.2.k.n 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
60.2.j.a 12 1.a even 1 1 trivial
60.2.j.a 12 4.b odd 2 1 inner
60.2.j.a 12 5.c odd 4 1 inner
60.2.j.a 12 20.e even 4 1 inner
180.2.k.e 12 3.b odd 2 1
180.2.k.e 12 12.b even 2 1
180.2.k.e 12 15.e even 4 1
180.2.k.e 12 60.l odd 4 1
300.2.j.d 12 5.b even 2 1
300.2.j.d 12 5.c odd 4 1
300.2.j.d 12 20.d odd 2 1
300.2.j.d 12 20.e even 4 1
900.2.k.n 12 15.d odd 2 1
900.2.k.n 12 15.e even 4 1
900.2.k.n 12 60.h even 2 1
900.2.k.n 12 60.l odd 4 1
960.2.w.g 12 8.b even 2 1
960.2.w.g 12 8.d odd 2 1
960.2.w.g 12 40.i odd 4 1
960.2.w.g 12 40.k even 4 1

Hecke kernels

This newform subspace is the entire newspace S2new(60,[χ])S_{2}^{\mathrm{new}}(60, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12+4T9++64 T^{12} + 4 T^{9} + \cdots + 64 Copy content Toggle raw display
33 (T4+1)3 (T^{4} + 1)^{3} Copy content Toggle raw display
55 (T6+5T4++125)2 (T^{6} + 5 T^{4} + \cdots + 125)^{2} Copy content Toggle raw display
77 T12+200T8++4096 T^{12} + 200 T^{8} + \cdots + 4096 Copy content Toggle raw display
1111 (T6+36T4++128)2 (T^{6} + 36 T^{4} + \cdots + 128)^{2} Copy content Toggle raw display
1313 (T6+2T5+2T4++32)2 (T^{6} + 2 T^{5} + 2 T^{4} + \cdots + 32)^{2} Copy content Toggle raw display
1717 (T6+10T5++800)2 (T^{6} + 10 T^{5} + \cdots + 800)^{2} Copy content Toggle raw display
1919 (T640T4+512)2 (T^{6} - 40 T^{4} + \cdots - 512)^{2} Copy content Toggle raw display
2323 T12+4640T8++65536 T^{12} + 4640 T^{8} + \cdots + 65536 Copy content Toggle raw display
2929 (T6+20T4++64)2 (T^{6} + 20 T^{4} + \cdots + 64)^{2} Copy content Toggle raw display
3131 (T6+112T4++32768)2 (T^{6} + 112 T^{4} + \cdots + 32768)^{2} Copy content Toggle raw display
3737 (T62T5+2T4++32)2 (T^{6} - 2 T^{5} + 2 T^{4} + \cdots + 32)^{2} Copy content Toggle raw display
4141 (T34T220T+64)4 (T^{3} - 4 T^{2} - 20 T + 64)^{4} Copy content Toggle raw display
4343 T12++15352201216 T^{12} + \cdots + 15352201216 Copy content Toggle raw display
4747 T12+4896T8++40960000 T^{12} + 4896 T^{8} + \cdots + 40960000 Copy content Toggle raw display
5353 (T62T5++128)2 (T^{6} - 2 T^{5} + \cdots + 128)^{2} Copy content Toggle raw display
5959 (T6100T4+512)2 (T^{6} - 100 T^{4} + \cdots - 512)^{2} Copy content Toggle raw display
6161 (T3+8T2++176)4 (T^{3} + 8 T^{2} + \cdots + 176)^{4} Copy content Toggle raw display
6767 T12++15352201216 T^{12} + \cdots + 15352201216 Copy content Toggle raw display
7171 (T6+256T4++204800)2 (T^{6} + 256 T^{4} + \cdots + 204800)^{2} Copy content Toggle raw display
7373 (T622T5++55112)2 (T^{6} - 22 T^{5} + \cdots + 55112)^{2} Copy content Toggle raw display
7979 (T6304T4+2048)2 (T^{6} - 304 T^{4} + \cdots - 2048)^{2} Copy content Toggle raw display
8383 T12+16672T8++65536 T^{12} + 16672 T^{8} + \cdots + 65536 Copy content Toggle raw display
8989 (T6+72T4++1024)2 (T^{6} + 72 T^{4} + \cdots + 1024)^{2} Copy content Toggle raw display
9797 (T6+10T5++35912)2 (T^{6} + 10 T^{5} + \cdots + 35912)^{2} Copy content Toggle raw display
show more
show less