L(s) = 1 | + (1.35 + 0.394i)2-s + (−0.707 − 0.707i)3-s + (1.68 + 1.07i)4-s + (−1.75 − 1.38i)5-s + (−0.681 − 1.23i)6-s + (−2.47 + 2.47i)7-s + (1.87 + 2.11i)8-s + 1.00i·9-s + (−1.83 − 2.57i)10-s − 3.02i·11-s + (−0.437 − 1.95i)12-s + (0.363 − 0.363i)13-s + (−4.34 + 2.38i)14-s + (0.256 + 2.22i)15-s + (1.70 + 3.61i)16-s + (−2.36 − 2.36i)17-s + ⋯ |
L(s) = 1 | + (0.960 + 0.278i)2-s + (−0.408 − 0.408i)3-s + (0.844 + 0.535i)4-s + (−0.783 − 0.621i)5-s + (−0.278 − 0.505i)6-s + (−0.936 + 0.936i)7-s + (0.661 + 0.749i)8-s + 0.333i·9-s + (−0.579 − 0.814i)10-s − 0.913i·11-s + (−0.126 − 0.563i)12-s + (0.100 − 0.100i)13-s + (−1.16 + 0.638i)14-s + (0.0663 + 0.573i)15-s + (0.426 + 0.904i)16-s + (−0.573 − 0.573i)17-s + ⋯ |
Λ(s)=(=(60s/2ΓC(s)L(s)(0.994−0.103i)Λ(2−s)
Λ(s)=(=(60s/2ΓC(s+1/2)L(s)(0.994−0.103i)Λ(1−s)
Degree: |
2 |
Conductor: |
60
= 22⋅3⋅5
|
Sign: |
0.994−0.103i
|
Analytic conductor: |
0.479102 |
Root analytic conductor: |
0.692172 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ60(7,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 60, ( :1/2), 0.994−0.103i)
|
Particular Values
L(1) |
≈ |
1.13211+0.0588211i |
L(21) |
≈ |
1.13211+0.0588211i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.35−0.394i)T |
| 3 | 1+(0.707+0.707i)T |
| 5 | 1+(1.75+1.38i)T |
good | 7 | 1+(2.47−2.47i)T−7iT2 |
| 11 | 1+3.02iT−11T2 |
| 13 | 1+(−0.363+0.363i)T−13iT2 |
| 17 | 1+(2.36+2.36i)T+17iT2 |
| 19 | 1−4.95T+19T2 |
| 23 | 1+(−0.900−0.900i)T+23iT2 |
| 29 | 1−3.50iT−29T2 |
| 31 | 1+3.85iT−31T2 |
| 37 | 1+(0.363+0.363i)T+37iT2 |
| 41 | 1−2.72T+41T2 |
| 43 | 1+(3.92+3.92i)T+43iT2 |
| 47 | 1+(5.85−5.85i)T−47iT2 |
| 53 | 1+(−3.14+3.14i)T−53iT2 |
| 59 | 1+8.68T+59T2 |
| 61 | 1+15.2T+61T2 |
| 67 | 1+(−3.92+3.92i)T−67iT2 |
| 71 | 1−4.25iT−71T2 |
| 73 | 1+(−9.28+9.28i)T−73iT2 |
| 79 | 1+0.399T+79T2 |
| 83 | 1+(−0.199−0.199i)T+83iT2 |
| 89 | 1−4.28iT−89T2 |
| 97 | 1+(−6.73−6.73i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.36790760819187953318912256821, −13.77488434072548104553198607366, −12.85022802355210355245258644241, −12.00324800912537837407477218774, −11.18726220073307894381233053579, −9.043323684358846287950424396288, −7.66632211036182986470108667259, −6.26972344492416972489918848919, −5.12045987168770241831574206311, −3.23476554326180866955618992189,
3.38477227989812797661300606691, 4.53011808042202940201052835960, 6.42737634161125575354669114117, 7.35642846402922270814853054122, 9.847185577527207281079643655937, 10.68976027580865864514972331879, 11.75249915797600334180292304126, 12.80726443676120092771426974029, 13.97020667312586228184528747230, 15.14842204528183520260688574443