Properties

Label 2-6000-5.4-c1-0-45
Degree $2$
Conductor $6000$
Sign $-i$
Analytic cond. $47.9102$
Root an. cond. $6.92172$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s + 1.38i·7-s − 9-s + 6.23·11-s + 3i·13-s − 3.38i·17-s − 19-s − 1.38·21-s + 6.70i·23-s i·27-s + 4.23·29-s + 3.09·31-s + 6.23i·33-s − 5i·37-s − 3·39-s + ⋯
L(s)  = 1  + 0.577i·3-s + 0.522i·7-s − 0.333·9-s + 1.88·11-s + 0.832i·13-s − 0.820i·17-s − 0.229·19-s − 0.301·21-s + 1.39i·23-s − 0.192i·27-s + 0.786·29-s + 0.555·31-s + 1.08i·33-s − 0.821i·37-s − 0.480·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6000\)    =    \(2^{4} \cdot 3 \cdot 5^{3}\)
Sign: $-i$
Analytic conductor: \(47.9102\)
Root analytic conductor: \(6.92172\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{6000} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 6000,\ (\ :1/2),\ -i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.194872107\)
\(L(\frac12)\) \(\approx\) \(2.194872107\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
5 \( 1 \)
good7 \( 1 - 1.38iT - 7T^{2} \)
11 \( 1 - 6.23T + 11T^{2} \)
13 \( 1 - 3iT - 13T^{2} \)
17 \( 1 + 3.38iT - 17T^{2} \)
19 \( 1 + T + 19T^{2} \)
23 \( 1 - 6.70iT - 23T^{2} \)
29 \( 1 - 4.23T + 29T^{2} \)
31 \( 1 - 3.09T + 31T^{2} \)
37 \( 1 + 5iT - 37T^{2} \)
41 \( 1 + 4.14T + 41T^{2} \)
43 \( 1 - 2.38iT - 43T^{2} \)
47 \( 1 - 9.18iT - 47T^{2} \)
53 \( 1 + 3.61iT - 53T^{2} \)
59 \( 1 - 10.7T + 59T^{2} \)
61 \( 1 + 5.09T + 61T^{2} \)
67 \( 1 + 8iT - 67T^{2} \)
71 \( 1 + 1.14T + 71T^{2} \)
73 \( 1 - 9.14iT - 73T^{2} \)
79 \( 1 - 2.76T + 79T^{2} \)
83 \( 1 - 8.32iT - 83T^{2} \)
89 \( 1 - 5.47T + 89T^{2} \)
97 \( 1 + 9.56iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.503319696765131294705433582317, −7.47974732061360613195214676689, −6.73908267041762519781100356696, −6.18130475766725826402720921661, −5.36166389742219699620843249776, −4.52404177533123052086773549903, −3.92770556282587765399507964437, −3.14516942269596473678648841214, −2.08903039400334965441480885432, −1.09247224217868012486904249346, 0.66049535098858556224487652619, 1.43505483538762821959349875866, 2.48481502600940957506789644544, 3.52634199587743765933659664259, 4.13977230156081707623358722189, 4.98242306379367774270142354107, 6.06864532716992106797738150033, 6.51979606830412014128565081458, 7.03724175706636410580252218956, 7.952537303851671843929230123238

Graph of the $Z$-function along the critical line