Properties

Label 6000.2.f.n
Level $6000$
Weight $2$
Character orbit 6000.f
Analytic conductor $47.910$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6000,2,Mod(1249,6000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6000.1249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6000 = 2^{4} \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6000.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.9102412128\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 375)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{3} + (3 \beta_{3} + \beta_1) q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{3} q^{3} + (3 \beta_{3} + \beta_1) q^{7} - q^{9} + ( - 2 \beta_{2} + 3) q^{11} + 3 \beta_{3} q^{13} + ( - 5 \beta_{3} - \beta_1) q^{17} - q^{19} + ( - \beta_{2} - 3) q^{21} + ( - 3 \beta_{3} - 6 \beta_1) q^{23} - \beta_{3} q^{27} + ( - 2 \beta_{2} + 1) q^{29} + ( - 5 \beta_{2} - 5) q^{31} + (3 \beta_{3} - 2 \beta_1) q^{33} - 5 \beta_{3} q^{37} - 3 q^{39} + ( - 3 \beta_{2} - 9) q^{41} + (4 \beta_{3} + \beta_1) q^{43} + ( - 7 \beta_{3} - 10 \beta_1) q^{47} + ( - 5 \beta_{2} - 3) q^{49} + (\beta_{2} + 5) q^{51} + ( - 2 \beta_{3} + \beta_1) q^{53} - \beta_{3} q^{57} + ( - 11 \beta_{2} - 7) q^{59} + (5 \beta_{2} + 3) q^{61} + ( - 3 \beta_{3} - \beta_1) q^{63} - 8 \beta_{3} q^{67} + (6 \beta_{2} + 3) q^{69} + ( - 3 \beta_{2} - 6) q^{71} + (14 \beta_{3} + 3 \beta_1) q^{73} + (7 \beta_{3} - \beta_1) q^{77} + (2 \beta_{2} + 6) q^{79} + q^{81} + ( - 3 \beta_{3} - 7 \beta_1) q^{83} + (\beta_{3} - 2 \beta_1) q^{87} + ( - 4 \beta_{2} - 1) q^{89} + ( - 3 \beta_{2} - 9) q^{91} + ( - 5 \beta_{3} - 5 \beta_1) q^{93} + (5 \beta_{3} + 9 \beta_1) q^{97} + (2 \beta_{2} - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{9} + 16 q^{11} - 4 q^{19} - 10 q^{21} + 8 q^{29} - 10 q^{31} - 12 q^{39} - 30 q^{41} - 2 q^{49} + 18 q^{51} - 6 q^{59} + 2 q^{61} - 18 q^{71} + 20 q^{79} + 4 q^{81} + 4 q^{89} - 30 q^{91} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 3x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 2\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 2\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6000\mathbb{Z}\right)^\times\).

\(n\) \(751\) \(4001\) \(4501\) \(5377\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1249.1
0.618034i
1.61803i
1.61803i
0.618034i
0 1.00000i 0 0 0 3.61803i 0 −1.00000 0
1249.2 0 1.00000i 0 0 0 1.38197i 0 −1.00000 0
1249.3 0 1.00000i 0 0 0 1.38197i 0 −1.00000 0
1249.4 0 1.00000i 0 0 0 3.61803i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6000.2.f.n 4
4.b odd 2 1 375.2.b.a 4
5.b even 2 1 inner 6000.2.f.n 4
5.c odd 4 1 6000.2.a.m 2
5.c odd 4 1 6000.2.a.q 2
12.b even 2 1 1125.2.b.b 4
20.d odd 2 1 375.2.b.a 4
20.e even 4 1 375.2.a.a 2
20.e even 4 1 375.2.a.d yes 2
60.h even 2 1 1125.2.b.b 4
60.l odd 4 1 1125.2.a.a 2
60.l odd 4 1 1125.2.a.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
375.2.a.a 2 20.e even 4 1
375.2.a.d yes 2 20.e even 4 1
375.2.b.a 4 4.b odd 2 1
375.2.b.a 4 20.d odd 2 1
1125.2.a.a 2 60.l odd 4 1
1125.2.a.f 2 60.l odd 4 1
1125.2.b.b 4 12.b even 2 1
1125.2.b.b 4 60.h even 2 1
6000.2.a.m 2 5.c odd 4 1
6000.2.a.q 2 5.c odd 4 1
6000.2.f.n 4 1.a even 1 1 trivial
6000.2.f.n 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(6000, [\chi])\):

\( T_{7}^{4} + 15T_{7}^{2} + 25 \) Copy content Toggle raw display
\( T_{11}^{2} - 8T_{11} + 11 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 15T^{2} + 25 \) Copy content Toggle raw display
$11$ \( (T^{2} - 8 T + 11)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 43T^{2} + 361 \) Copy content Toggle raw display
$19$ \( (T + 1)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 45)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 4 T - 1)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 5 T - 25)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 25)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 15 T + 45)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 27T^{2} + 121 \) Copy content Toggle raw display
$47$ \( T^{4} + 258 T^{2} + 14641 \) Copy content Toggle raw display
$53$ \( T^{4} + 15T^{2} + 25 \) Copy content Toggle raw display
$59$ \( (T^{2} + 3 T - 149)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - T - 31)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 9 T + 9)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 335 T^{2} + 21025 \) Copy content Toggle raw display
$79$ \( (T^{2} - 10 T + 20)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 123T^{2} + 3721 \) Copy content Toggle raw display
$89$ \( (T^{2} - 2 T - 19)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 203 T^{2} + 10201 \) Copy content Toggle raw display
show more
show less