Properties

Label 375.2.b.a
Level $375$
Weight $2$
Character orbit 375.b
Analytic conductor $2.994$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [375,2,Mod(124,375)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(375, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("375.124");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 375 = 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 375.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.99439007580\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} + \beta_1) q^{2} - \beta_{3} q^{3} + 3 \beta_{2} q^{4} + (\beta_{2} - 1) q^{6} + ( - 3 \beta_{3} - \beta_1) q^{7} + (\beta_{3} - 4 \beta_1) q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{3} + \beta_1) q^{2} - \beta_{3} q^{3} + 3 \beta_{2} q^{4} + (\beta_{2} - 1) q^{6} + ( - 3 \beta_{3} - \beta_1) q^{7} + (\beta_{3} - 4 \beta_1) q^{8} - q^{9} + (2 \beta_{2} - 3) q^{11} - 3 \beta_1 q^{12} + 3 \beta_{3} q^{13} + (\beta_{2} - 2) q^{14} + ( - 3 \beta_{2} + 5) q^{16} + ( - 5 \beta_{3} - \beta_1) q^{17} + (\beta_{3} - \beta_1) q^{18} + q^{19} + ( - \beta_{2} - 3) q^{21} + (5 \beta_{3} - 7 \beta_1) q^{22} + (3 \beta_{3} + 6 \beta_1) q^{23} + ( - 4 \beta_{2} + 1) q^{24} + ( - 3 \beta_{2} + 3) q^{26} + \beta_{3} q^{27} + ( - 3 \beta_{3} - 6 \beta_1) q^{28} + ( - 2 \beta_{2} + 1) q^{29} + (5 \beta_{2} + 5) q^{31} + ( - 6 \beta_{3} + 3 \beta_1) q^{32} + (3 \beta_{3} - 2 \beta_1) q^{33} + (3 \beta_{2} - 4) q^{34} - 3 \beta_{2} q^{36} - 5 \beta_{3} q^{37} + ( - \beta_{3} + \beta_1) q^{38} + 3 q^{39} + ( - 3 \beta_{2} - 9) q^{41} + (2 \beta_{3} - \beta_1) q^{42} + ( - 4 \beta_{3} - \beta_1) q^{43} + ( - 15 \beta_{2} + 6) q^{44} + (9 \beta_{2} - 3) q^{46} + (7 \beta_{3} + 10 \beta_1) q^{47} + ( - 5 \beta_{3} + 3 \beta_1) q^{48} + ( - 5 \beta_{2} - 3) q^{49} + ( - \beta_{2} - 5) q^{51} + 9 \beta_1 q^{52} + ( - 2 \beta_{3} + \beta_1) q^{53} + ( - \beta_{2} + 1) q^{54} + ( - 7 \beta_{2} - 1) q^{56} - \beta_{3} q^{57} + ( - 3 \beta_{3} + 5 \beta_1) q^{58} + (11 \beta_{2} + 7) q^{59} + (5 \beta_{2} + 3) q^{61} - 5 \beta_1 q^{62} + (3 \beta_{3} + \beta_1) q^{63} + (6 \beta_{2} + 1) q^{64} + ( - 7 \beta_{2} + 5) q^{66} + 8 \beta_{3} q^{67} + ( - 3 \beta_{3} - 12 \beta_1) q^{68} + (6 \beta_{2} + 3) q^{69} + (3 \beta_{2} + 6) q^{71} + ( - \beta_{3} + 4 \beta_1) q^{72} + (14 \beta_{3} + 3 \beta_1) q^{73} + (5 \beta_{2} - 5) q^{74} + 3 \beta_{2} q^{76} + (7 \beta_{3} - \beta_1) q^{77} + ( - 3 \beta_{3} + 3 \beta_1) q^{78} + ( - 2 \beta_{2} - 6) q^{79} + q^{81} + (6 \beta_{3} - 3 \beta_1) q^{82} + (3 \beta_{3} + 7 \beta_1) q^{83} + ( - 6 \beta_{2} - 3) q^{84} + (2 \beta_{2} - 3) q^{86} + ( - \beta_{3} + 2 \beta_1) q^{87} + ( - 11 \beta_{3} + 22 \beta_1) q^{88} + ( - 4 \beta_{2} - 1) q^{89} + (3 \beta_{2} + 9) q^{91} + (18 \beta_{3} - 9 \beta_1) q^{92} + ( - 5 \beta_{3} - 5 \beta_1) q^{93} + (13 \beta_{2} - 3) q^{94} + (3 \beta_{2} - 6) q^{96} + (5 \beta_{3} + 9 \beta_1) q^{97} + ( - 2 \beta_{3} + 7 \beta_1) q^{98} + ( - 2 \beta_{2} + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{4} - 6 q^{6} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 6 q^{4} - 6 q^{6} - 4 q^{9} - 16 q^{11} - 10 q^{14} + 26 q^{16} + 4 q^{19} - 10 q^{21} + 12 q^{24} + 18 q^{26} + 8 q^{29} + 10 q^{31} - 22 q^{34} + 6 q^{36} + 12 q^{39} - 30 q^{41} + 54 q^{44} - 30 q^{46} - 2 q^{49} - 18 q^{51} + 6 q^{54} + 10 q^{56} + 6 q^{59} + 2 q^{61} - 8 q^{64} + 34 q^{66} + 18 q^{71} - 30 q^{74} - 6 q^{76} - 20 q^{79} + 4 q^{81} - 16 q^{86} + 4 q^{89} + 30 q^{91} - 38 q^{94} - 30 q^{96} + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 3x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 2\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 2\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/375\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
124.1
1.61803i
0.618034i
0.618034i
1.61803i
2.61803i 1.00000i −4.85410 0 −2.61803 1.38197i 7.47214i −1.00000 0
124.2 0.381966i 1.00000i 1.85410 0 −0.381966 3.61803i 1.47214i −1.00000 0
124.3 0.381966i 1.00000i 1.85410 0 −0.381966 3.61803i 1.47214i −1.00000 0
124.4 2.61803i 1.00000i −4.85410 0 −2.61803 1.38197i 7.47214i −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 375.2.b.a 4
3.b odd 2 1 1125.2.b.b 4
4.b odd 2 1 6000.2.f.n 4
5.b even 2 1 inner 375.2.b.a 4
5.c odd 4 1 375.2.a.a 2
5.c odd 4 1 375.2.a.d yes 2
15.d odd 2 1 1125.2.b.b 4
15.e even 4 1 1125.2.a.a 2
15.e even 4 1 1125.2.a.f 2
20.d odd 2 1 6000.2.f.n 4
20.e even 4 1 6000.2.a.m 2
20.e even 4 1 6000.2.a.q 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
375.2.a.a 2 5.c odd 4 1
375.2.a.d yes 2 5.c odd 4 1
375.2.b.a 4 1.a even 1 1 trivial
375.2.b.a 4 5.b even 2 1 inner
1125.2.a.a 2 15.e even 4 1
1125.2.a.f 2 15.e even 4 1
1125.2.b.b 4 3.b odd 2 1
1125.2.b.b 4 15.d odd 2 1
6000.2.a.m 2 20.e even 4 1
6000.2.a.q 2 20.e even 4 1
6000.2.f.n 4 4.b odd 2 1
6000.2.f.n 4 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 7T_{2}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(375, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 7T^{2} + 1 \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 15T^{2} + 25 \) Copy content Toggle raw display
$11$ \( (T^{2} + 8 T + 11)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 43T^{2} + 361 \) Copy content Toggle raw display
$19$ \( (T - 1)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 45)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 4 T - 1)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 5 T - 25)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 25)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 15 T + 45)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 27T^{2} + 121 \) Copy content Toggle raw display
$47$ \( T^{4} + 258 T^{2} + 14641 \) Copy content Toggle raw display
$53$ \( T^{4} + 15T^{2} + 25 \) Copy content Toggle raw display
$59$ \( (T^{2} - 3 T - 149)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - T - 31)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 9 T + 9)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 335 T^{2} + 21025 \) Copy content Toggle raw display
$79$ \( (T^{2} + 10 T + 20)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 123T^{2} + 3721 \) Copy content Toggle raw display
$89$ \( (T^{2} - 2 T - 19)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 203 T^{2} + 10201 \) Copy content Toggle raw display
show more
show less