Properties

Label 2-6000-5.4-c1-0-70
Degree $2$
Conductor $6000$
Sign $i$
Analytic cond. $47.9102$
Root an. cond. $6.92172$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s + 4.73i·7-s − 9-s + 4.34·11-s − 2.30i·13-s + 0.618i·17-s − 4.41·19-s + 4.73·21-s − 6.34i·23-s + i·27-s − 7.54·29-s − 4.80·31-s − 4.34i·33-s − 10.9i·37-s − 2.30·39-s + ⋯
L(s)  = 1  − 0.577i·3-s + 1.78i·7-s − 0.333·9-s + 1.31·11-s − 0.639i·13-s + 0.149i·17-s − 1.01·19-s + 1.03·21-s − 1.32i·23-s + 0.192i·27-s − 1.40·29-s − 0.862·31-s − 0.757i·33-s − 1.80i·37-s − 0.369·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6000\)    =    \(2^{4} \cdot 3 \cdot 5^{3}\)
Sign: $i$
Analytic conductor: \(47.9102\)
Root analytic conductor: \(6.92172\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{6000} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 6000,\ (\ :1/2),\ i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.374191601\)
\(L(\frac12)\) \(\approx\) \(1.374191601\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
5 \( 1 \)
good7 \( 1 - 4.73iT - 7T^{2} \)
11 \( 1 - 4.34T + 11T^{2} \)
13 \( 1 + 2.30iT - 13T^{2} \)
17 \( 1 - 0.618iT - 17T^{2} \)
19 \( 1 + 4.41T + 19T^{2} \)
23 \( 1 + 6.34iT - 23T^{2} \)
29 \( 1 + 7.54T + 29T^{2} \)
31 \( 1 + 4.80T + 31T^{2} \)
37 \( 1 + 10.9iT - 37T^{2} \)
41 \( 1 + 5.20T + 41T^{2} \)
43 \( 1 + 6.85iT - 43T^{2} \)
47 \( 1 + 0.165iT - 47T^{2} \)
53 \( 1 - 2.16iT - 53T^{2} \)
59 \( 1 - 12.9T + 59T^{2} \)
61 \( 1 - 4.11T + 61T^{2} \)
67 \( 1 + 14.6iT - 67T^{2} \)
71 \( 1 - 4.92T + 71T^{2} \)
73 \( 1 - 7.91iT - 73T^{2} \)
79 \( 1 - 17.0T + 79T^{2} \)
83 \( 1 - 5.72iT - 83T^{2} \)
89 \( 1 + 0.816T + 89T^{2} \)
97 \( 1 + 7.20iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.089358623624594872353466465524, −7.02976732694934975626017225436, −6.50540050809015695334060862176, −5.71628195765955340129685397085, −5.36999605552138083515376080420, −4.16139647712172100846634689232, −3.37653686068264132714555389966, −2.23202021655212948037062778437, −1.92954107625152772597088603176, −0.37256297523656360201148427452, 1.05984166767295396924635449964, 1.90832263229045716149693332363, 3.49570423609070497626109344516, 3.79477051494600534808891857336, 4.44331320456036136736382275229, 5.23171415651609678919225846582, 6.33641124724757154733829165490, 6.82242372797424890503421928186, 7.45726976621930356317286583659, 8.249287434840042760925624310520

Graph of the $Z$-function along the critical line