L(s) = 1 | − i·3-s + 4.73i·7-s − 9-s + 4.34·11-s − 2.30i·13-s + 0.618i·17-s − 4.41·19-s + 4.73·21-s − 6.34i·23-s + i·27-s − 7.54·29-s − 4.80·31-s − 4.34i·33-s − 10.9i·37-s − 2.30·39-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + 1.78i·7-s − 0.333·9-s + 1.31·11-s − 0.639i·13-s + 0.149i·17-s − 1.01·19-s + 1.03·21-s − 1.32i·23-s + 0.192i·27-s − 1.40·29-s − 0.862·31-s − 0.757i·33-s − 1.80i·37-s − 0.369·39-s + ⋯ |
Λ(s)=(=(6000s/2ΓC(s)L(s)iΛ(2−s)
Λ(s)=(=(6000s/2ΓC(s+1/2)L(s)iΛ(1−s)
Degree: |
2 |
Conductor: |
6000
= 24⋅3⋅53
|
Sign: |
i
|
Analytic conductor: |
47.9102 |
Root analytic conductor: |
6.92172 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ6000(1249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 6000, ( :1/2), i)
|
Particular Values
L(1) |
≈ |
1.374191601 |
L(21) |
≈ |
1.374191601 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+iT |
| 5 | 1 |
good | 7 | 1−4.73iT−7T2 |
| 11 | 1−4.34T+11T2 |
| 13 | 1+2.30iT−13T2 |
| 17 | 1−0.618iT−17T2 |
| 19 | 1+4.41T+19T2 |
| 23 | 1+6.34iT−23T2 |
| 29 | 1+7.54T+29T2 |
| 31 | 1+4.80T+31T2 |
| 37 | 1+10.9iT−37T2 |
| 41 | 1+5.20T+41T2 |
| 43 | 1+6.85iT−43T2 |
| 47 | 1+0.165iT−47T2 |
| 53 | 1−2.16iT−53T2 |
| 59 | 1−12.9T+59T2 |
| 61 | 1−4.11T+61T2 |
| 67 | 1+14.6iT−67T2 |
| 71 | 1−4.92T+71T2 |
| 73 | 1−7.91iT−73T2 |
| 79 | 1−17.0T+79T2 |
| 83 | 1−5.72iT−83T2 |
| 89 | 1+0.816T+89T2 |
| 97 | 1+7.20iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.089358623624594872353466465524, −7.02976732694934975626017225436, −6.50540050809015695334060862176, −5.71628195765955340129685397085, −5.36999605552138083515376080420, −4.16139647712172100846634689232, −3.37653686068264132714555389966, −2.23202021655212948037062778437, −1.92954107625152772597088603176, −0.37256297523656360201148427452,
1.05984166767295396924635449964, 1.90832263229045716149693332363, 3.49570423609070497626109344516, 3.79477051494600534808891857336, 4.44331320456036136736382275229, 5.23171415651609678919225846582, 6.33641124724757154733829165490, 6.82242372797424890503421928186, 7.45726976621930356317286583659, 8.249287434840042760925624310520