Properties

Label 6000.2.f.p
Level 60006000
Weight 22
Character orbit 6000.f
Analytic conductor 47.91047.910
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6000,2,Mod(1249,6000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6000.1249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 6000=24353 6000 = 2^{4} \cdot 3 \cdot 5^{3}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 6000.f (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 47.910241212847.9102412128
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.566105760000.21
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+45x6+728x4+4965x2+11881 x^{8} + 45x^{6} + 728x^{4} + 4965x^{2} + 11881 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 3000)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β7q3+(β7+β1)q7q9+(β6+β21)q11+(β7+β5)q13β4q17+(β6β3+2β21)q19++(β6β2+1)q99+O(q100) q + \beta_{7} q^{3} + ( - \beta_{7} + \beta_1) q^{7} - q^{9} + (\beta_{6} + \beta_{2} - 1) q^{11} + (\beta_{7} + \beta_{5}) q^{13} - \beta_{4} q^{17} + ( - \beta_{6} - \beta_{3} + 2 \beta_{2} - 1) q^{19}+ \cdots + ( - \beta_{6} - \beta_{2} + 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q96q11+6q2130q2912q316q39+26q4138q494q51+16q59+26q6110q69+18q71+42q79+8q8124q8934q91+6q99+O(q100) 8 q - 8 q^{9} - 6 q^{11} + 6 q^{21} - 30 q^{29} - 12 q^{31} - 6 q^{39} + 26 q^{41} - 38 q^{49} - 4 q^{51} + 16 q^{59} + 26 q^{61} - 10 q^{69} + 18 q^{71} + 42 q^{79} + 8 q^{81} - 24 q^{89} - 34 q^{91} + 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+45x6+728x4+4965x2+11881 x^{8} + 45x^{6} + 728x^{4} + 4965x^{2} + 11881 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν6+24ν4+144ν2+181)/80 ( \nu^{6} + 24\nu^{4} + 144\nu^{2} + 181 ) / 80 Copy content Toggle raw display
β3\beta_{3}== ν211 -\nu^{2} - 11 Copy content Toggle raw display
β4\beta_{4}== (9ν7+296ν5+3936ν3+20269ν)/8720 ( 9\nu^{7} + 296\nu^{5} + 3936\nu^{3} + 20269\nu ) / 8720 Copy content Toggle raw display
β5\beta_{5}== (19ν7+344ν5+14944ν3+87041ν)/8720 ( -19\nu^{7} + 344\nu^{5} + 14944\nu^{3} + 87041\nu ) / 8720 Copy content Toggle raw display
β6\beta_{6}== (ν6+32ν4+320ν2+981)/8 ( \nu^{6} + 32\nu^{4} + 320\nu^{2} + 981 ) / 8 Copy content Toggle raw display
β7\beta_{7}== (9ν7296ν53064ν39805ν)/872 ( -9\nu^{7} - 296\nu^{5} - 3064\nu^{3} - 9805\nu ) / 872 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β311 -\beta_{3} - 11 Copy content Toggle raw display
ν3\nu^{3}== β7+10β412β1 \beta_{7} + 10\beta_{4} - 12\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β6+22β310β2+142 \beta_{6} + 22\beta_{3} - 10\beta_{2} + 142 Copy content Toggle raw display
ν5\nu^{5}== 24β7+9β5221β4+154β1 -24\beta_{7} + 9\beta_{5} - 221\beta_{4} + 154\beta_1 Copy content Toggle raw display
ν6\nu^{6}== 24β6384β3+320β22005 -24\beta_{6} - 384\beta_{3} + 320\beta_{2} - 2005 Copy content Toggle raw display
ν7\nu^{7}== 352β7296β5+3864β42069β1 352\beta_{7} - 296\beta_{5} + 3864\beta_{4} - 2069\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/6000Z)×\left(\mathbb{Z}/6000\mathbb{Z}\right)^\times.

nn 751751 40014001 45014501 53775377
χ(n)\chi(n) 11 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1249.1
3.97706i
3.11349i
2.35902i
3.73152i
3.73152i
2.35902i
3.11349i
3.97706i
0 1.00000i 0 0 0 2.97706i 0 −1.00000 0
1249.2 0 1.00000i 0 0 0 2.11349i 0 −1.00000 0
1249.3 0 1.00000i 0 0 0 3.35902i 0 −1.00000 0
1249.4 0 1.00000i 0 0 0 4.73152i 0 −1.00000 0
1249.5 0 1.00000i 0 0 0 4.73152i 0 −1.00000 0
1249.6 0 1.00000i 0 0 0 3.35902i 0 −1.00000 0
1249.7 0 1.00000i 0 0 0 2.11349i 0 −1.00000 0
1249.8 0 1.00000i 0 0 0 2.97706i 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1249.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6000.2.f.p 8
4.b odd 2 1 3000.2.f.h 8
5.b even 2 1 inner 6000.2.f.p 8
5.c odd 4 1 6000.2.a.bc 4
5.c odd 4 1 6000.2.a.bl 4
20.d odd 2 1 3000.2.f.h 8
20.e even 4 1 3000.2.a.j 4
20.e even 4 1 3000.2.a.o yes 4
60.l odd 4 1 9000.2.a.t 4
60.l odd 4 1 9000.2.a.y 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3000.2.a.j 4 20.e even 4 1
3000.2.a.o yes 4 20.e even 4 1
3000.2.f.h 8 4.b odd 2 1
3000.2.f.h 8 20.d odd 2 1
6000.2.a.bc 4 5.c odd 4 1
6000.2.a.bl 4 5.c odd 4 1
6000.2.f.p 8 1.a even 1 1 trivial
6000.2.f.p 8 5.b even 2 1 inner
9000.2.a.t 4 60.l odd 4 1
9000.2.a.y 4 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(6000,[χ])S_{2}^{\mathrm{new}}(6000, [\chi]):

T78+47T76+741T74+4700T72+10000 T_{7}^{8} + 47T_{7}^{6} + 741T_{7}^{4} + 4700T_{7}^{2} + 10000 Copy content Toggle raw display
T114+3T11324T11245T11+45 T_{11}^{4} + 3T_{11}^{3} - 24T_{11}^{2} - 45T_{11} + 45 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T2+1)4 (T^{2} + 1)^{4} Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T8+47T6++10000 T^{8} + 47 T^{6} + \cdots + 10000 Copy content Toggle raw display
1111 (T4+3T324T2++45)2 (T^{4} + 3 T^{3} - 24 T^{2} + \cdots + 45)^{2} Copy content Toggle raw display
1313 T8+65T6++11881 T^{8} + 65 T^{6} + \cdots + 11881 Copy content Toggle raw display
1717 (T4+3T2+1)2 (T^{4} + 3 T^{2} + 1)^{2} Copy content Toggle raw display
1919 (T437T2++76)2 (T^{4} - 37 T^{2} + \cdots + 76)^{2} Copy content Toggle raw display
2323 T8+61T6++961 T^{8} + 61 T^{6} + \cdots + 961 Copy content Toggle raw display
2929 (T4+15T3+549)2 (T^{4} + 15 T^{3} + \cdots - 549)^{2} Copy content Toggle raw display
3131 (T4+6T3+305)2 (T^{4} + 6 T^{3} + \cdots - 305)^{2} Copy content Toggle raw display
3737 T8+249T6++4669921 T^{8} + 249 T^{6} + \cdots + 4669921 Copy content Toggle raw display
4141 (T413T3+500)2 (T^{4} - 13 T^{3} + \cdots - 500)^{2} Copy content Toggle raw display
4343 (T4+47T2+1)2 (T^{4} + 47 T^{2} + 1)^{2} Copy content Toggle raw display
4747 T8+193T6++625 T^{8} + 193 T^{6} + \cdots + 625 Copy content Toggle raw display
5353 T8+123T6++400 T^{8} + 123 T^{6} + \cdots + 400 Copy content Toggle raw display
5959 (T48T3+4805)2 (T^{4} - 8 T^{3} + \cdots - 4805)^{2} Copy content Toggle raw display
6161 (T413T3+4196)2 (T^{4} - 13 T^{3} + \cdots - 4196)^{2} Copy content Toggle raw display
6767 T8+539T6++149426176 T^{8} + 539 T^{6} + \cdots + 149426176 Copy content Toggle raw display
7171 (T49T3T2+80)2 (T^{4} - 9 T^{3} - T^{2} + \cdots - 80)^{2} Copy content Toggle raw display
7373 T8+207T6++2310400 T^{8} + 207 T^{6} + \cdots + 2310400 Copy content Toggle raw display
7979 (T421T3+36)2 (T^{4} - 21 T^{3} + \cdots - 36)^{2} Copy content Toggle raw display
8383 T8+435T6++57214096 T^{8} + 435 T^{6} + \cdots + 57214096 Copy content Toggle raw display
8989 (T4+12T3+36)2 (T^{4} + 12 T^{3} + \cdots - 36)^{2} Copy content Toggle raw display
9797 T8+151T6++5776 T^{8} + 151 T^{6} + \cdots + 5776 Copy content Toggle raw display
show more
show less