Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [6000,2,Mod(1249,6000)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6000, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6000.1249");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 6000.f (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 8.0.566105760000.21 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 3000) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1249.1 |
|
0 | − | 1.00000i | 0 | 0 | 0 | − | 2.97706i | 0 | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||
1249.2 | 0 | − | 1.00000i | 0 | 0 | 0 | − | 2.11349i | 0 | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||
1249.3 | 0 | − | 1.00000i | 0 | 0 | 0 | 3.35902i | 0 | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||
1249.4 | 0 | − | 1.00000i | 0 | 0 | 0 | 4.73152i | 0 | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||
1249.5 | 0 | 1.00000i | 0 | 0 | 0 | − | 4.73152i | 0 | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||
1249.6 | 0 | 1.00000i | 0 | 0 | 0 | − | 3.35902i | 0 | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||
1249.7 | 0 | 1.00000i | 0 | 0 | 0 | 2.11349i | 0 | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1249.8 | 0 | 1.00000i | 0 | 0 | 0 | 2.97706i | 0 | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 6000.2.f.p | 8 | |
4.b | odd | 2 | 1 | 3000.2.f.h | 8 | ||
5.b | even | 2 | 1 | inner | 6000.2.f.p | 8 | |
5.c | odd | 4 | 1 | 6000.2.a.bc | 4 | ||
5.c | odd | 4 | 1 | 6000.2.a.bl | 4 | ||
20.d | odd | 2 | 1 | 3000.2.f.h | 8 | ||
20.e | even | 4 | 1 | 3000.2.a.j | ✓ | 4 | |
20.e | even | 4 | 1 | 3000.2.a.o | yes | 4 | |
60.l | odd | 4 | 1 | 9000.2.a.t | 4 | ||
60.l | odd | 4 | 1 | 9000.2.a.y | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
3000.2.a.j | ✓ | 4 | 20.e | even | 4 | 1 | |
3000.2.a.o | yes | 4 | 20.e | even | 4 | 1 | |
3000.2.f.h | 8 | 4.b | odd | 2 | 1 | ||
3000.2.f.h | 8 | 20.d | odd | 2 | 1 | ||
6000.2.a.bc | 4 | 5.c | odd | 4 | 1 | ||
6000.2.a.bl | 4 | 5.c | odd | 4 | 1 | ||
6000.2.f.p | 8 | 1.a | even | 1 | 1 | trivial | |
6000.2.f.p | 8 | 5.b | even | 2 | 1 | inner | |
9000.2.a.t | 4 | 60.l | odd | 4 | 1 | ||
9000.2.a.y | 4 | 60.l | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|