L(s) = 1 | − 4·9-s − 6·11-s − 30·29-s − 12·31-s + 26·41-s + 9·49-s + 16·59-s + 26·61-s + 18·71-s + 42·79-s + 10·81-s − 24·89-s + 24·99-s + 62·101-s − 12·109-s − 13·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 39·169-s + 173-s + ⋯ |
L(s) = 1 | − 4/3·9-s − 1.80·11-s − 5.57·29-s − 2.15·31-s + 4.06·41-s + 9/7·49-s + 2.08·59-s + 3.32·61-s + 2.13·71-s + 4.72·79-s + 10/9·81-s − 2.54·89-s + 2.41·99-s + 6.16·101-s − 1.14·109-s − 1.18·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3·169-s + 0.0760·173-s + ⋯ |
Λ(s)=(=((232⋅38⋅524)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((232⋅38⋅524)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.2340295597 |
L(21) |
≈ |
0.2340295597 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | (1+T2)4 |
| 5 | 1 |
good | 7 | 1−9T2+139T4−711T6+7704T8−711p2T10+139p4T12−9p6T14+p8T16 |
| 11 | (1+3T+20T2+54T3+243T4+54pT5+20p2T6+3p3T7+p4T8)2 |
| 13 | 1−3pT2+790T4−10368T6+128673T8−10368p2T10+790p4T12−3p7T14+p8T16 |
| 17 | (1−65T2+1633T4−65p2T6+p4T8)2 |
| 19 | (1+39T2−60T3+44pT4−60pT5+39p2T6+p4T8)2 |
| 23 | 1−123T2+7330T4−279288T6+7526469T8−279288p2T10+7330p4T12−123p6T14+p8T16 |
| 29 | (1+15T+164T2+1170T3+7281T4+1170pT5+164p2T6+15p3T7+p4T8)2 |
| 31 | (1+6T+3pT2+318T3+3539T4+318pT5+3p3T6+6p3T7+p4T8)2 |
| 37 | 1−47T2+2670T4−90832T6+5094089T8−90832p2T10+2670p4T12−47p6T14+p8T16 |
| 41 | (1−13T+155T2−1249T3+8848T4−1249pT5+155p2T6−13p3T7+p4T8)2 |
| 43 | (1−125T2+7053T4−125p2T6+p4T8)2 |
| 47 | 1−183T2+11962T4−248976T6−1203891T8−248976p2T10+11962p4T12−183p6T14+p8T16 |
| 53 | 1−301T2+40599T4−3376979T6+203717984T8−3376979p2T10+40599p4T12−301p6T14+p8T16 |
| 59 | (1−8T+47T2+574T3−6221T4+574pT5+47p2T6−8p3T7+p4T8)2 |
| 61 | (1−13T+121T2−703T3+3124T4−703pT5+121p2T6−13p3T7+p4T8)2 |
| 67 | 1+3T2+6415T4+99pT6+48836664T8+99p3T10+6415p4T12+3p6T14+p8T16 |
| 71 | (1−9T+283T2−1797T3+30024T4−1797pT5+283p2T6−9p3T7+p4T8)2 |
| 73 | 1−377T2+72387T4−8942539T6+772942784T8−8942539p2T10+72387p4T12−377p6T14+p8T16 |
| 79 | (1−21T+319T2−3879T3+37884T4−3879pT5+319p2T6−21p3T7+p4T8)2 |
| 83 | 1−229T2+37515T4−49201pT6+385185608T8−49201p3T10+37515p4T12−229p6T14+p8T16 |
| 89 | (1+12T+353T2+3150T3+46956T4+3150pT5+353p2T6+12p3T7+p4T8)2 |
| 97 | 1−625T2+181591T4−32088775T6+3771831376T8−32088775p2T10+181591p4T12−625p6T14+p8T16 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.38861659025515183525242837786, −3.37653686068264132714555389966, −2.94893224289645595460302696307, −2.94496304969601059052646909845, −2.77643375271936565162704064517, −2.73116255750232733030998399361, −2.53255577114478525743253537281, −2.38742402314291200695983636424, −2.37461751427821487030254901585, −2.23202021655212948037062778437, −2.19193377324302399889635487629, −2.15152711860714224420826447826, −1.99403846333524756531823879467, −1.92954107625152772597088603176, −1.90832263229045716149693332363, −1.50577344870171157545923384560, −1.43692979273384505555012382582, −1.15439249352552819897464043570, −1.05984166767295396924635449964, −0.927146285051308016546901074780, −0.852858671187509984375719036122, −0.53931515961035545194060220009, −0.39729088829953576766156842326, −0.37256297523656360201148427452, −0.04250184961434522257182240598,
0.04250184961434522257182240598, 0.37256297523656360201148427452, 0.39729088829953576766156842326, 0.53931515961035545194060220009, 0.852858671187509984375719036122, 0.927146285051308016546901074780, 1.05984166767295396924635449964, 1.15439249352552819897464043570, 1.43692979273384505555012382582, 1.50577344870171157545923384560, 1.90832263229045716149693332363, 1.92954107625152772597088603176, 1.99403846333524756531823879467, 2.15152711860714224420826447826, 2.19193377324302399889635487629, 2.23202021655212948037062778437, 2.37461751427821487030254901585, 2.38742402314291200695983636424, 2.53255577114478525743253537281, 2.73116255750232733030998399361, 2.77643375271936565162704064517, 2.94496304969601059052646909845, 2.94893224289645595460302696307, 3.37653686068264132714555389966, 3.38861659025515183525242837786
Plot not available for L-functions of degree greater than 10.