Properties

Label 6000.2.f.p.1249.3
Level $6000$
Weight $2$
Character 6000.1249
Analytic conductor $47.910$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6000,2,Mod(1249,6000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6000.1249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6000 = 2^{4} \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6000.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.9102412128\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.566105760000.21
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 45x^{6} + 728x^{4} + 4965x^{2} + 11881 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3000)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.3
Root \(2.35902i\) of defining polynomial
Character \(\chi\) \(=\) 6000.1249
Dual form 6000.2.f.p.1249.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +3.35902i q^{7} -1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{3} +3.35902i q^{7} -1.00000 q^{9} +0.740989 q^{11} +3.81698i q^{13} -1.61803i q^{17} +0.839922 q^{19} +3.35902 q^{21} -2.74099i q^{23} +1.00000i q^{27} +3.05305 q^{29} -1.77811 q^{31} -0.740989i q^{33} +4.89297i q^{37} +3.81698 q^{39} +5.11311 q^{41} -0.145898i q^{43} +2.65516i q^{47} -4.28303 q^{49} -1.61803 q^{51} -10.6711i q^{53} -0.839922i q^{57} -14.9602 q^{59} +14.9930 q^{61} -3.35902i q^{63} +8.41099i q^{67} -2.74099 q^{69} -3.43501 q^{71} +5.75517i q^{73} +2.48900i q^{77} +0.0327846 q^{79} +1.00000 q^{81} +10.5492i q^{83} -3.05305i q^{87} -1.60385 q^{89} -12.8213 q^{91} +1.77811i q^{93} +3.11311i q^{97} -0.740989 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{9} - 6 q^{11} + 6 q^{21} - 30 q^{29} - 12 q^{31} - 6 q^{39} + 26 q^{41} - 38 q^{49} - 4 q^{51} + 16 q^{59} + 26 q^{61} - 10 q^{69} + 18 q^{71} + 42 q^{79} + 8 q^{81} - 24 q^{89} - 34 q^{91} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6000\mathbb{Z}\right)^\times\).

\(n\) \(751\) \(4001\) \(4501\) \(5377\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.35902i 1.26959i 0.772680 + 0.634796i \(0.218916\pi\)
−0.772680 + 0.634796i \(0.781084\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0.740989 0.223416 0.111708 0.993741i \(-0.464368\pi\)
0.111708 + 0.993741i \(0.464368\pi\)
\(12\) 0 0
\(13\) 3.81698i 1.05864i 0.848422 + 0.529320i \(0.177553\pi\)
−0.848422 + 0.529320i \(0.822447\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 1.61803i − 0.392431i −0.980561 0.196215i \(-0.937135\pi\)
0.980561 0.196215i \(-0.0628652\pi\)
\(18\) 0 0
\(19\) 0.839922 0.192691 0.0963457 0.995348i \(-0.469285\pi\)
0.0963457 + 0.995348i \(0.469285\pi\)
\(20\) 0 0
\(21\) 3.35902 0.732999
\(22\) 0 0
\(23\) − 2.74099i − 0.571536i −0.958299 0.285768i \(-0.907751\pi\)
0.958299 0.285768i \(-0.0922486\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 3.05305 0.566937 0.283468 0.958982i \(-0.408515\pi\)
0.283468 + 0.958982i \(0.408515\pi\)
\(30\) 0 0
\(31\) −1.77811 −0.319358 −0.159679 0.987169i \(-0.551046\pi\)
−0.159679 + 0.987169i \(0.551046\pi\)
\(32\) 0 0
\(33\) − 0.740989i − 0.128990i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.89297i 0.804399i 0.915552 + 0.402200i \(0.131754\pi\)
−0.915552 + 0.402200i \(0.868246\pi\)
\(38\) 0 0
\(39\) 3.81698 0.611206
\(40\) 0 0
\(41\) 5.11311 0.798534 0.399267 0.916835i \(-0.369265\pi\)
0.399267 + 0.916835i \(0.369265\pi\)
\(42\) 0 0
\(43\) − 0.145898i − 0.0222492i −0.999938 0.0111246i \(-0.996459\pi\)
0.999938 0.0111246i \(-0.00354115\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.65516i 0.387294i 0.981071 + 0.193647i \(0.0620317\pi\)
−0.981071 + 0.193647i \(0.937968\pi\)
\(48\) 0 0
\(49\) −4.28303 −0.611862
\(50\) 0 0
\(51\) −1.61803 −0.226570
\(52\) 0 0
\(53\) − 10.6711i − 1.46579i −0.680344 0.732893i \(-0.738170\pi\)
0.680344 0.732893i \(-0.261830\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 0.839922i − 0.111250i
\(58\) 0 0
\(59\) −14.9602 −1.94765 −0.973826 0.227296i \(-0.927012\pi\)
−0.973826 + 0.227296i \(0.927012\pi\)
\(60\) 0 0
\(61\) 14.9930 1.91965 0.959827 0.280592i \(-0.0905307\pi\)
0.959827 + 0.280592i \(0.0905307\pi\)
\(62\) 0 0
\(63\) − 3.35902i − 0.423197i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 8.41099i 1.02757i 0.857920 + 0.513783i \(0.171756\pi\)
−0.857920 + 0.513783i \(0.828244\pi\)
\(68\) 0 0
\(69\) −2.74099 −0.329976
\(70\) 0 0
\(71\) −3.43501 −0.407661 −0.203831 0.979006i \(-0.565339\pi\)
−0.203831 + 0.979006i \(0.565339\pi\)
\(72\) 0 0
\(73\) 5.75517i 0.673592i 0.941578 + 0.336796i \(0.109343\pi\)
−0.941578 + 0.336796i \(0.890657\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.48900i 0.283648i
\(78\) 0 0
\(79\) 0.0327846 0.00368856 0.00184428 0.999998i \(-0.499413\pi\)
0.00184428 + 0.999998i \(0.499413\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 10.5492i 1.15793i 0.815354 + 0.578963i \(0.196542\pi\)
−0.815354 + 0.578963i \(0.803458\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 3.05305i − 0.327321i
\(88\) 0 0
\(89\) −1.60385 −0.170008 −0.0850041 0.996381i \(-0.527090\pi\)
−0.0850041 + 0.996381i \(0.527090\pi\)
\(90\) 0 0
\(91\) −12.8213 −1.34404
\(92\) 0 0
\(93\) 1.77811i 0.184382i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.11311i 0.316089i 0.987432 + 0.158044i \(0.0505189\pi\)
−0.987432 + 0.158044i \(0.949481\pi\)
\(98\) 0 0
\(99\) −0.740989 −0.0744722
\(100\) 0 0
\(101\) 13.8071 1.37386 0.686931 0.726723i \(-0.258958\pi\)
0.686931 + 0.726723i \(0.258958\pi\)
\(102\) 0 0
\(103\) 12.6252i 1.24400i 0.783018 + 0.621999i \(0.213679\pi\)
−0.783018 + 0.621999i \(0.786321\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.14322i 0.883908i 0.897038 + 0.441954i \(0.145715\pi\)
−0.897038 + 0.441954i \(0.854285\pi\)
\(108\) 0 0
\(109\) −9.23781 −0.884822 −0.442411 0.896812i \(-0.645877\pi\)
−0.442411 + 0.896812i \(0.645877\pi\)
\(110\) 0 0
\(111\) 4.89297 0.464420
\(112\) 0 0
\(113\) − 7.90107i − 0.743270i −0.928379 0.371635i \(-0.878797\pi\)
0.928379 0.371635i \(-0.121203\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 3.81698i − 0.352880i
\(118\) 0 0
\(119\) 5.43501 0.498227
\(120\) 0 0
\(121\) −10.4509 −0.950085
\(122\) 0 0
\(123\) − 5.11311i − 0.461034i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 7.31206i 0.648840i 0.945913 + 0.324420i \(0.105169\pi\)
−0.945913 + 0.324420i \(0.894831\pi\)
\(128\) 0 0
\(129\) −0.145898 −0.0128456
\(130\) 0 0
\(131\) −15.2192 −1.32971 −0.664854 0.746973i \(-0.731506\pi\)
−0.664854 + 0.746973i \(0.731506\pi\)
\(132\) 0 0
\(133\) 2.82132i 0.244639i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.4492i 0.892735i 0.894850 + 0.446367i \(0.147283\pi\)
−0.894850 + 0.446367i \(0.852717\pi\)
\(138\) 0 0
\(139\) −16.1362 −1.36865 −0.684327 0.729175i \(-0.739904\pi\)
−0.684327 + 0.729175i \(0.739904\pi\)
\(140\) 0 0
\(141\) 2.65516 0.223605
\(142\) 0 0
\(143\) 2.82834i 0.236517i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 4.28303i 0.353259i
\(148\) 0 0
\(149\) −2.12188 −0.173831 −0.0869155 0.996216i \(-0.527701\pi\)
−0.0869155 + 0.996216i \(0.527701\pi\)
\(150\) 0 0
\(151\) −18.3732 −1.49519 −0.747595 0.664155i \(-0.768792\pi\)
−0.747595 + 0.664155i \(0.768792\pi\)
\(152\) 0 0
\(153\) 1.61803i 0.130810i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 17.9585i 1.43324i 0.697464 + 0.716620i \(0.254312\pi\)
−0.697464 + 0.716620i \(0.745688\pi\)
\(158\) 0 0
\(159\) −10.6711 −0.846272
\(160\) 0 0
\(161\) 9.20704 0.725617
\(162\) 0 0
\(163\) − 7.89123i − 0.618088i −0.951048 0.309044i \(-0.899991\pi\)
0.951048 0.309044i \(-0.100009\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.60927i 0.588823i 0.955679 + 0.294412i \(0.0951236\pi\)
−0.955679 + 0.294412i \(0.904876\pi\)
\(168\) 0 0
\(169\) −1.56933 −0.120717
\(170\) 0 0
\(171\) −0.839922 −0.0642305
\(172\) 0 0
\(173\) − 12.6410i − 0.961076i −0.876974 0.480538i \(-0.840441\pi\)
0.876974 0.480538i \(-0.159559\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 14.9602i 1.12448i
\(178\) 0 0
\(179\) 4.61370 0.344844 0.172422 0.985023i \(-0.444841\pi\)
0.172422 + 0.985023i \(0.444841\pi\)
\(180\) 0 0
\(181\) −21.5881 −1.60463 −0.802314 0.596902i \(-0.796398\pi\)
−0.802314 + 0.596902i \(0.796398\pi\)
\(182\) 0 0
\(183\) − 14.9930i − 1.10831i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 1.19894i − 0.0876755i
\(188\) 0 0
\(189\) −3.35902 −0.244333
\(190\) 0 0
\(191\) −8.59617 −0.621997 −0.310998 0.950410i \(-0.600663\pi\)
−0.310998 + 0.950410i \(0.600663\pi\)
\(192\) 0 0
\(193\) 25.7383i 1.85268i 0.376684 + 0.926342i \(0.377064\pi\)
−0.376684 + 0.926342i \(0.622936\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.3678i 0.881168i 0.897711 + 0.440584i \(0.145229\pi\)
−0.897711 + 0.440584i \(0.854771\pi\)
\(198\) 0 0
\(199\) 25.4050 1.80092 0.900458 0.434943i \(-0.143231\pi\)
0.900458 + 0.434943i \(0.143231\pi\)
\(200\) 0 0
\(201\) 8.41099 0.593266
\(202\) 0 0
\(203\) 10.2553i 0.719778i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 2.74099i 0.190512i
\(208\) 0 0
\(209\) 0.622373 0.0430504
\(210\) 0 0
\(211\) −22.7761 −1.56797 −0.783986 0.620779i \(-0.786816\pi\)
−0.783986 + 0.620779i \(0.786816\pi\)
\(212\) 0 0
\(213\) 3.43501i 0.235363i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 5.97272i − 0.405455i
\(218\) 0 0
\(219\) 5.75517 0.388898
\(220\) 0 0
\(221\) 6.17600 0.415443
\(222\) 0 0
\(223\) − 8.15024i − 0.545780i −0.962045 0.272890i \(-0.912020\pi\)
0.962045 0.272890i \(-0.0879795\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 8.07773i − 0.536138i −0.963400 0.268069i \(-0.913614\pi\)
0.963400 0.268069i \(-0.0863855\pi\)
\(228\) 0 0
\(229\) 23.1443 1.52942 0.764709 0.644376i \(-0.222883\pi\)
0.764709 + 0.644376i \(0.222883\pi\)
\(230\) 0 0
\(231\) 2.48900 0.163764
\(232\) 0 0
\(233\) 7.20436i 0.471973i 0.971756 + 0.235987i \(0.0758322\pi\)
−0.971756 + 0.235987i \(0.924168\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 0.0327846i − 0.00212959i
\(238\) 0 0
\(239\) 13.0213 0.842280 0.421140 0.906996i \(-0.361630\pi\)
0.421140 + 0.906996i \(0.361630\pi\)
\(240\) 0 0
\(241\) 17.2351 1.11021 0.555106 0.831780i \(-0.312678\pi\)
0.555106 + 0.831780i \(0.312678\pi\)
\(242\) 0 0
\(243\) − 1.00000i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.20596i 0.203991i
\(248\) 0 0
\(249\) 10.5492 0.668529
\(250\) 0 0
\(251\) −11.5420 −0.728527 −0.364264 0.931296i \(-0.618679\pi\)
−0.364264 + 0.931296i \(0.618679\pi\)
\(252\) 0 0
\(253\) − 2.03104i − 0.127690i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 28.8390i 1.79893i 0.436997 + 0.899463i \(0.356042\pi\)
−0.436997 + 0.899463i \(0.643958\pi\)
\(258\) 0 0
\(259\) −16.4356 −1.02126
\(260\) 0 0
\(261\) −3.05305 −0.188979
\(262\) 0 0
\(263\) 12.6562i 0.780417i 0.920727 + 0.390208i \(0.127597\pi\)
−0.920727 + 0.390208i \(0.872403\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.60385i 0.0981543i
\(268\) 0 0
\(269\) −15.2884 −0.932153 −0.466077 0.884744i \(-0.654333\pi\)
−0.466077 + 0.884744i \(0.654333\pi\)
\(270\) 0 0
\(271\) 16.4404 0.998685 0.499342 0.866405i \(-0.333575\pi\)
0.499342 + 0.866405i \(0.333575\pi\)
\(272\) 0 0
\(273\) 12.8213i 0.775981i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 25.8329i 1.55215i 0.630641 + 0.776074i \(0.282792\pi\)
−0.630641 + 0.776074i \(0.717208\pi\)
\(278\) 0 0
\(279\) 1.77811 0.106453
\(280\) 0 0
\(281\) −12.7170 −0.758631 −0.379315 0.925267i \(-0.623840\pi\)
−0.379315 + 0.925267i \(0.623840\pi\)
\(282\) 0 0
\(283\) − 18.6209i − 1.10689i −0.832884 0.553447i \(-0.813312\pi\)
0.832884 0.553447i \(-0.186688\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 17.1751i 1.01381i
\(288\) 0 0
\(289\) 14.3820 0.845998
\(290\) 0 0
\(291\) 3.11311 0.182494
\(292\) 0 0
\(293\) − 25.9541i − 1.51626i −0.652106 0.758128i \(-0.726114\pi\)
0.652106 0.758128i \(-0.273886\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0.740989i 0.0429965i
\(298\) 0 0
\(299\) 10.4623 0.605050
\(300\) 0 0
\(301\) 0.490075 0.0282474
\(302\) 0 0
\(303\) − 13.8071i − 0.793199i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 5.68526i − 0.324475i −0.986752 0.162237i \(-0.948129\pi\)
0.986752 0.162237i \(-0.0518711\pi\)
\(308\) 0 0
\(309\) 12.6252 0.718222
\(310\) 0 0
\(311\) 25.6472 1.45432 0.727160 0.686468i \(-0.240840\pi\)
0.727160 + 0.686468i \(0.240840\pi\)
\(312\) 0 0
\(313\) 4.66934i 0.263927i 0.991255 + 0.131963i \(0.0421281\pi\)
−0.991255 + 0.131963i \(0.957872\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 9.49240i − 0.533146i −0.963815 0.266573i \(-0.914109\pi\)
0.963815 0.266573i \(-0.0858914\pi\)
\(318\) 0 0
\(319\) 2.26227 0.126663
\(320\) 0 0
\(321\) 9.14322 0.510325
\(322\) 0 0
\(323\) − 1.35902i − 0.0756180i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 9.23781i 0.510852i
\(328\) 0 0
\(329\) −8.91873 −0.491706
\(330\) 0 0
\(331\) −22.2875 −1.22503 −0.612516 0.790458i \(-0.709843\pi\)
−0.612516 + 0.790458i \(0.709843\pi\)
\(332\) 0 0
\(333\) − 4.89297i − 0.268133i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 24.7958i − 1.35071i −0.737492 0.675356i \(-0.763990\pi\)
0.737492 0.675356i \(-0.236010\pi\)
\(338\) 0 0
\(339\) −7.90107 −0.429127
\(340\) 0 0
\(341\) −1.31756 −0.0713499
\(342\) 0 0
\(343\) 9.12636i 0.492777i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 31.4013i 1.68571i 0.538141 + 0.842855i \(0.319127\pi\)
−0.538141 + 0.842855i \(0.680873\pi\)
\(348\) 0 0
\(349\) −6.39548 −0.342342 −0.171171 0.985241i \(-0.554755\pi\)
−0.171171 + 0.985241i \(0.554755\pi\)
\(350\) 0 0
\(351\) −3.81698 −0.203735
\(352\) 0 0
\(353\) 1.13780i 0.0605590i 0.999541 + 0.0302795i \(0.00963974\pi\)
−0.999541 + 0.0302795i \(0.990360\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 5.43501i − 0.287651i
\(358\) 0 0
\(359\) −14.6403 −0.772686 −0.386343 0.922355i \(-0.626262\pi\)
−0.386343 + 0.922355i \(0.626262\pi\)
\(360\) 0 0
\(361\) −18.2945 −0.962870
\(362\) 0 0
\(363\) 10.4509i 0.548532i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 6.57715i − 0.343325i −0.985156 0.171662i \(-0.945086\pi\)
0.985156 0.171662i \(-0.0549138\pi\)
\(368\) 0 0
\(369\) −5.11311 −0.266178
\(370\) 0 0
\(371\) 35.8444 1.86095
\(372\) 0 0
\(373\) − 23.9224i − 1.23866i −0.785133 0.619328i \(-0.787405\pi\)
0.785133 0.619328i \(-0.212595\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 11.6534i 0.600181i
\(378\) 0 0
\(379\) −9.34150 −0.479840 −0.239920 0.970793i \(-0.577121\pi\)
−0.239920 + 0.970793i \(0.577121\pi\)
\(380\) 0 0
\(381\) 7.31206 0.374608
\(382\) 0 0
\(383\) 31.2794i 1.59830i 0.601129 + 0.799152i \(0.294718\pi\)
−0.601129 + 0.799152i \(0.705282\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.145898i 0.00741641i
\(388\) 0 0
\(389\) 8.53220 0.432600 0.216300 0.976327i \(-0.430601\pi\)
0.216300 + 0.976327i \(0.430601\pi\)
\(390\) 0 0
\(391\) −4.43501 −0.224288
\(392\) 0 0
\(393\) 15.2192i 0.767707i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9.84802i 0.494258i 0.968983 + 0.247129i \(0.0794871\pi\)
−0.968983 + 0.247129i \(0.920513\pi\)
\(398\) 0 0
\(399\) 2.82132 0.141243
\(400\) 0 0
\(401\) 31.6924 1.58264 0.791322 0.611400i \(-0.209393\pi\)
0.791322 + 0.611400i \(0.209393\pi\)
\(402\) 0 0
\(403\) − 6.78702i − 0.338085i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.62563i 0.179716i
\(408\) 0 0
\(409\) 2.26711 0.112101 0.0560507 0.998428i \(-0.482149\pi\)
0.0560507 + 0.998428i \(0.482149\pi\)
\(410\) 0 0
\(411\) 10.4492 0.515421
\(412\) 0 0
\(413\) − 50.2516i − 2.47272i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 16.1362i 0.790193i
\(418\) 0 0
\(419\) 34.2678 1.67409 0.837046 0.547132i \(-0.184280\pi\)
0.837046 + 0.547132i \(0.184280\pi\)
\(420\) 0 0
\(421\) −24.7923 −1.20830 −0.604151 0.796870i \(-0.706488\pi\)
−0.604151 + 0.796870i \(0.706488\pi\)
\(422\) 0 0
\(423\) − 2.65516i − 0.129098i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 50.3618i 2.43718i
\(428\) 0 0
\(429\) 2.82834 0.136553
\(430\) 0 0
\(431\) 37.9842 1.82964 0.914818 0.403867i \(-0.132334\pi\)
0.914818 + 0.403867i \(0.132334\pi\)
\(432\) 0 0
\(433\) 12.7267i 0.611607i 0.952095 + 0.305804i \(0.0989251\pi\)
−0.952095 + 0.305804i \(0.901075\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 2.30222i − 0.110130i
\(438\) 0 0
\(439\) 6.49441 0.309961 0.154981 0.987917i \(-0.450468\pi\)
0.154981 + 0.987917i \(0.450468\pi\)
\(440\) 0 0
\(441\) 4.28303 0.203954
\(442\) 0 0
\(443\) 41.4017i 1.96705i 0.180761 + 0.983527i \(0.442144\pi\)
−0.180761 + 0.983527i \(0.557856\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 2.12188i 0.100361i
\(448\) 0 0
\(449\) −2.07532 −0.0979406 −0.0489703 0.998800i \(-0.515594\pi\)
−0.0489703 + 0.998800i \(0.515594\pi\)
\(450\) 0 0
\(451\) 3.78876 0.178406
\(452\) 0 0
\(453\) 18.3732i 0.863248i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 14.5579i 0.680989i 0.940247 + 0.340494i \(0.110594\pi\)
−0.940247 + 0.340494i \(0.889406\pi\)
\(458\) 0 0
\(459\) 1.61803 0.0755234
\(460\) 0 0
\(461\) 2.08042 0.0968946 0.0484473 0.998826i \(-0.484573\pi\)
0.0484473 + 0.998826i \(0.484573\pi\)
\(462\) 0 0
\(463\) − 35.4935i − 1.64952i −0.565482 0.824761i \(-0.691310\pi\)
0.565482 0.824761i \(-0.308690\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 23.0690i − 1.06750i −0.845641 0.533752i \(-0.820781\pi\)
0.845641 0.533752i \(-0.179219\pi\)
\(468\) 0 0
\(469\) −28.2527 −1.30459
\(470\) 0 0
\(471\) 17.9585 0.827482
\(472\) 0 0
\(473\) − 0.108109i − 0.00497085i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 10.6711i 0.488595i
\(478\) 0 0
\(479\) −24.9761 −1.14119 −0.570594 0.821232i \(-0.693287\pi\)
−0.570594 + 0.821232i \(0.693287\pi\)
\(480\) 0 0
\(481\) −18.6764 −0.851569
\(482\) 0 0
\(483\) − 9.20704i − 0.418935i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 5.93443i 0.268915i 0.990919 + 0.134457i \(0.0429291\pi\)
−0.990919 + 0.134457i \(0.957071\pi\)
\(488\) 0 0
\(489\) −7.89123 −0.356854
\(490\) 0 0
\(491\) 9.04428 0.408163 0.204081 0.978954i \(-0.434579\pi\)
0.204081 + 0.978954i \(0.434579\pi\)
\(492\) 0 0
\(493\) − 4.93993i − 0.222483i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 11.5383i − 0.517563i
\(498\) 0 0
\(499\) 13.0203 0.582867 0.291433 0.956591i \(-0.405868\pi\)
0.291433 + 0.956591i \(0.405868\pi\)
\(500\) 0 0
\(501\) 7.60927 0.339957
\(502\) 0 0
\(503\) 4.22730i 0.188486i 0.995549 + 0.0942431i \(0.0300431\pi\)
−0.995549 + 0.0942431i \(0.969957\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.56933i 0.0696962i
\(508\) 0 0
\(509\) 35.5543 1.57592 0.787959 0.615727i \(-0.211138\pi\)
0.787959 + 0.615727i \(0.211138\pi\)
\(510\) 0 0
\(511\) −19.3317 −0.855186
\(512\) 0 0
\(513\) 0.839922i 0.0370835i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.96744i 0.0865280i
\(518\) 0 0
\(519\) −12.6410 −0.554877
\(520\) 0 0
\(521\) −12.4994 −0.547609 −0.273805 0.961785i \(-0.588282\pi\)
−0.273805 + 0.961785i \(0.588282\pi\)
\(522\) 0 0
\(523\) − 18.7346i − 0.819208i −0.912263 0.409604i \(-0.865667\pi\)
0.912263 0.409604i \(-0.134333\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.87705i 0.125326i
\(528\) 0 0
\(529\) 15.4870 0.673347
\(530\) 0 0
\(531\) 14.9602 0.649217
\(532\) 0 0
\(533\) 19.5166i 0.845360i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 4.61370i − 0.199096i
\(538\) 0 0
\(539\) −3.17368 −0.136700
\(540\) 0 0
\(541\) −18.0771 −0.777194 −0.388597 0.921408i \(-0.627040\pi\)
−0.388597 + 0.921408i \(0.627040\pi\)
\(542\) 0 0
\(543\) 21.5881i 0.926433i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 16.0246i − 0.685162i −0.939488 0.342581i \(-0.888699\pi\)
0.939488 0.342581i \(-0.111301\pi\)
\(548\) 0 0
\(549\) −14.9930 −0.639885
\(550\) 0 0
\(551\) 2.56432 0.109244
\(552\) 0 0
\(553\) 0.110124i 0.00468296i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 11.9093i − 0.504613i −0.967647 0.252307i \(-0.918811\pi\)
0.967647 0.252307i \(-0.0811892\pi\)
\(558\) 0 0
\(559\) 0.556890 0.0235539
\(560\) 0 0
\(561\) −1.19894 −0.0506195
\(562\) 0 0
\(563\) − 7.78702i − 0.328184i −0.986445 0.164092i \(-0.947531\pi\)
0.986445 0.164092i \(-0.0524693\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.35902i 0.141066i
\(568\) 0 0
\(569\) 0.387468 0.0162435 0.00812176 0.999967i \(-0.497415\pi\)
0.00812176 + 0.999967i \(0.497415\pi\)
\(570\) 0 0
\(571\) 29.9652 1.25400 0.627002 0.779017i \(-0.284282\pi\)
0.627002 + 0.779017i \(0.284282\pi\)
\(572\) 0 0
\(573\) 8.59617i 0.359110i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 5.08583i − 0.211726i −0.994381 0.105863i \(-0.966240\pi\)
0.994381 0.105863i \(-0.0337605\pi\)
\(578\) 0 0
\(579\) 25.7383 1.06965
\(580\) 0 0
\(581\) −35.4350 −1.47009
\(582\) 0 0
\(583\) − 7.90715i − 0.327481i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 9.68159i − 0.399602i −0.979837 0.199801i \(-0.935970\pi\)
0.979837 0.199801i \(-0.0640296\pi\)
\(588\) 0 0
\(589\) −1.49348 −0.0615376
\(590\) 0 0
\(591\) 12.3678 0.508743
\(592\) 0 0
\(593\) − 0.120359i − 0.00494257i −0.999997 0.00247128i \(-0.999213\pi\)
0.999997 0.00247128i \(-0.000786635\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 25.4050i − 1.03976i
\(598\) 0 0
\(599\) 3.53936 0.144614 0.0723072 0.997382i \(-0.476964\pi\)
0.0723072 + 0.997382i \(0.476964\pi\)
\(600\) 0 0
\(601\) −20.6295 −0.841496 −0.420748 0.907178i \(-0.638232\pi\)
−0.420748 + 0.907178i \(0.638232\pi\)
\(602\) 0 0
\(603\) − 8.41099i − 0.342522i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 2.77610i − 0.112678i −0.998412 0.0563391i \(-0.982057\pi\)
0.998412 0.0563391i \(-0.0179428\pi\)
\(608\) 0 0
\(609\) 10.2553 0.415564
\(610\) 0 0
\(611\) −10.1347 −0.410005
\(612\) 0 0
\(613\) − 2.42451i − 0.0979249i −0.998801 0.0489624i \(-0.984409\pi\)
0.998801 0.0489624i \(-0.0155915\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.991902i 0.0399325i 0.999801 + 0.0199662i \(0.00635587\pi\)
−0.999801 + 0.0199662i \(0.993644\pi\)
\(618\) 0 0
\(619\) 30.9783 1.24512 0.622561 0.782571i \(-0.286092\pi\)
0.622561 + 0.782571i \(0.286092\pi\)
\(620\) 0 0
\(621\) 2.74099 0.109992
\(622\) 0 0
\(623\) − 5.38738i − 0.215841i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 0.622373i − 0.0248552i
\(628\) 0 0
\(629\) 7.91699 0.315671
\(630\) 0 0
\(631\) 33.9231 1.35046 0.675228 0.737609i \(-0.264045\pi\)
0.675228 + 0.737609i \(0.264045\pi\)
\(632\) 0 0
\(633\) 22.7761i 0.905269i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 16.3482i − 0.647741i
\(638\) 0 0
\(639\) 3.43501 0.135887
\(640\) 0 0
\(641\) 24.2405 0.957444 0.478722 0.877967i \(-0.341100\pi\)
0.478722 + 0.877967i \(0.341100\pi\)
\(642\) 0 0
\(643\) − 2.43662i − 0.0960908i −0.998845 0.0480454i \(-0.984701\pi\)
0.998845 0.0480454i \(-0.0152992\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.6481i 0.654506i 0.944937 + 0.327253i \(0.106123\pi\)
−0.944937 + 0.327253i \(0.893877\pi\)
\(648\) 0 0
\(649\) −11.0853 −0.435137
\(650\) 0 0
\(651\) −5.97272 −0.234089
\(652\) 0 0
\(653\) 14.8700i 0.581909i 0.956737 + 0.290955i \(0.0939728\pi\)
−0.956737 + 0.290955i \(0.906027\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 5.75517i − 0.224531i
\(658\) 0 0
\(659\) −11.3710 −0.442953 −0.221477 0.975166i \(-0.571088\pi\)
−0.221477 + 0.975166i \(0.571088\pi\)
\(660\) 0 0
\(661\) −43.7035 −1.69987 −0.849935 0.526888i \(-0.823359\pi\)
−0.849935 + 0.526888i \(0.823359\pi\)
\(662\) 0 0
\(663\) − 6.17600i − 0.239856i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 8.36837i − 0.324024i
\(668\) 0 0
\(669\) −8.15024 −0.315106
\(670\) 0 0
\(671\) 11.1096 0.428882
\(672\) 0 0
\(673\) 14.6438i 0.564477i 0.959344 + 0.282238i \(0.0910769\pi\)
−0.959344 + 0.282238i \(0.908923\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 15.0525i − 0.578515i −0.957251 0.289258i \(-0.906592\pi\)
0.957251 0.289258i \(-0.0934084\pi\)
\(678\) 0 0
\(679\) −10.4570 −0.401304
\(680\) 0 0
\(681\) −8.07773 −0.309539
\(682\) 0 0
\(683\) 21.7186i 0.831040i 0.909584 + 0.415520i \(0.136400\pi\)
−0.909584 + 0.415520i \(0.863600\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 23.1443i − 0.883010i
\(688\) 0 0
\(689\) 40.7313 1.55174
\(690\) 0 0
\(691\) −20.4367 −0.777448 −0.388724 0.921354i \(-0.627084\pi\)
−0.388724 + 0.921354i \(0.627084\pi\)
\(692\) 0 0
\(693\) − 2.48900i − 0.0945492i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 8.27319i − 0.313369i
\(698\) 0 0
\(699\) 7.20436 0.272494
\(700\) 0 0
\(701\) 19.9308 0.752774 0.376387 0.926462i \(-0.377166\pi\)
0.376387 + 0.926462i \(0.377166\pi\)
\(702\) 0 0
\(703\) 4.10971i 0.155001i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 46.3785i 1.74424i
\(708\) 0 0
\(709\) 37.0980 1.39324 0.696622 0.717438i \(-0.254685\pi\)
0.696622 + 0.717438i \(0.254685\pi\)
\(710\) 0 0
\(711\) −0.0327846 −0.00122952
\(712\) 0 0
\(713\) 4.87378i 0.182525i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 13.0213i − 0.486291i
\(718\) 0 0
\(719\) −28.7975 −1.07397 −0.536983 0.843593i \(-0.680436\pi\)
−0.536983 + 0.843593i \(0.680436\pi\)
\(720\) 0 0
\(721\) −42.4083 −1.57937
\(722\) 0 0
\(723\) − 17.2351i − 0.640981i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 37.7221i 1.39904i 0.714615 + 0.699518i \(0.246602\pi\)
−0.714615 + 0.699518i \(0.753398\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −0.236068 −0.00873129
\(732\) 0 0
\(733\) − 24.5732i − 0.907633i −0.891095 0.453816i \(-0.850062\pi\)
0.891095 0.453816i \(-0.149938\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.23245i 0.229575i
\(738\) 0 0
\(739\) 1.83465 0.0674885 0.0337443 0.999431i \(-0.489257\pi\)
0.0337443 + 0.999431i \(0.489257\pi\)
\(740\) 0 0
\(741\) 3.20596 0.117774
\(742\) 0 0
\(743\) 0.728992i 0.0267441i 0.999911 + 0.0133721i \(0.00425659\pi\)
−0.999911 + 0.0133721i \(0.995743\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 10.5492i − 0.385975i
\(748\) 0 0
\(749\) −30.7123 −1.12220
\(750\) 0 0
\(751\) −31.3690 −1.14467 −0.572336 0.820019i \(-0.693963\pi\)
−0.572336 + 0.820019i \(0.693963\pi\)
\(752\) 0 0
\(753\) 11.5420i 0.420615i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 37.6006i 1.36662i 0.730129 + 0.683309i \(0.239460\pi\)
−0.730129 + 0.683309i \(0.760540\pi\)
\(758\) 0 0
\(759\) −2.03104 −0.0737221
\(760\) 0 0
\(761\) −26.6105 −0.964629 −0.482315 0.875998i \(-0.660204\pi\)
−0.482315 + 0.875998i \(0.660204\pi\)
\(762\) 0 0
\(763\) − 31.0300i − 1.12336i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 57.1027i − 2.06186i
\(768\) 0 0
\(769\) −31.1520 −1.12337 −0.561686 0.827351i \(-0.689847\pi\)
−0.561686 + 0.827351i \(0.689847\pi\)
\(770\) 0 0
\(771\) 28.8390 1.03861
\(772\) 0 0
\(773\) − 55.2028i − 1.98551i −0.120176 0.992753i \(-0.538346\pi\)
0.120176 0.992753i \(-0.461654\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 16.4356i 0.589624i
\(778\) 0 0
\(779\) 4.29462 0.153871
\(780\) 0 0
\(781\) −2.54531 −0.0910782
\(782\) 0 0
\(783\) 3.05305i 0.109107i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1.46243i 0.0521302i 0.999660 + 0.0260651i \(0.00829771\pi\)
−0.999660 + 0.0260651i \(0.991702\pi\)
\(788\) 0 0
\(789\) 12.6562 0.450574
\(790\) 0 0
\(791\) 26.5399 0.943649
\(792\) 0 0
\(793\) 57.2279i 2.03222i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 36.6287i 1.29745i 0.761021 + 0.648727i \(0.224698\pi\)
−0.761021 + 0.648727i \(0.775302\pi\)
\(798\) 0 0
\(799\) 4.29613 0.151986
\(800\) 0 0
\(801\) 1.60385 0.0566694
\(802\) 0 0
\(803\) 4.26451i 0.150491i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 15.2884i 0.538179i
\(808\) 0 0
\(809\) −9.23673 −0.324746 −0.162373 0.986729i \(-0.551915\pi\)
−0.162373 + 0.986729i \(0.551915\pi\)
\(810\) 0 0
\(811\) −12.0011 −0.421415 −0.210707 0.977549i \(-0.567577\pi\)
−0.210707 + 0.977549i \(0.567577\pi\)
\(812\) 0 0
\(813\) − 16.4404i − 0.576591i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 0.122543i − 0.00428724i
\(818\) 0 0
\(819\) 12.8213 0.448013
\(820\) 0 0
\(821\) −33.1991 −1.15866 −0.579328 0.815095i \(-0.696685\pi\)
−0.579328 + 0.815095i \(0.696685\pi\)
\(822\) 0 0
\(823\) 19.6745i 0.685809i 0.939370 + 0.342905i \(0.111411\pi\)
−0.939370 + 0.342905i \(0.888589\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 17.7712i − 0.617966i −0.951068 0.308983i \(-0.900011\pi\)
0.951068 0.308983i \(-0.0999887\pi\)
\(828\) 0 0
\(829\) 5.87987 0.204216 0.102108 0.994773i \(-0.467441\pi\)
0.102108 + 0.994773i \(0.467441\pi\)
\(830\) 0 0
\(831\) 25.8329 0.896133
\(832\) 0 0
\(833\) 6.93009i 0.240113i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 1.77811i − 0.0614605i
\(838\) 0 0
\(839\) 9.56664 0.330277 0.165139 0.986270i \(-0.447193\pi\)
0.165139 + 0.986270i \(0.447193\pi\)
\(840\) 0 0
\(841\) −19.6789 −0.678583
\(842\) 0 0
\(843\) 12.7170i 0.437996i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 35.1049i − 1.20622i
\(848\) 0 0
\(849\) −18.6209 −0.639066
\(850\) 0 0
\(851\) 13.4116 0.459743
\(852\) 0 0
\(853\) − 44.2548i − 1.51526i −0.652687 0.757628i \(-0.726358\pi\)
0.652687 0.757628i \(-0.273642\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 19.5920i − 0.669250i −0.942351 0.334625i \(-0.891390\pi\)
0.942351 0.334625i \(-0.108610\pi\)
\(858\) 0 0
\(859\) −35.7011 −1.21811 −0.609053 0.793130i \(-0.708450\pi\)
−0.609053 + 0.793130i \(0.708450\pi\)
\(860\) 0 0
\(861\) 17.1751 0.585325
\(862\) 0 0
\(863\) 0.815321i 0.0277539i 0.999904 + 0.0138769i \(0.00441731\pi\)
−0.999904 + 0.0138769i \(0.995583\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 14.3820i − 0.488437i
\(868\) 0 0
\(869\) 0.0242930 0.000824085 0
\(870\) 0 0
\(871\) −32.1046 −1.08782
\(872\) 0 0
\(873\) − 3.11311i − 0.105363i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 25.4021i − 0.857769i −0.903359 0.428885i \(-0.858907\pi\)
0.903359 0.428885i \(-0.141093\pi\)
\(878\) 0 0
\(879\) −25.9541 −0.875411
\(880\) 0 0
\(881\) −24.6263 −0.829680 −0.414840 0.909894i \(-0.636162\pi\)
−0.414840 + 0.909894i \(0.636162\pi\)
\(882\) 0 0
\(883\) 38.7763i 1.30493i 0.757820 + 0.652464i \(0.226264\pi\)
−0.757820 + 0.652464i \(0.773736\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 22.5001i − 0.755479i −0.925912 0.377739i \(-0.876702\pi\)
0.925912 0.377739i \(-0.123298\pi\)
\(888\) 0 0
\(889\) −24.5614 −0.823762
\(890\) 0 0
\(891\) 0.740989 0.0248241
\(892\) 0 0
\(893\) 2.23013i 0.0746283i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 10.4623i − 0.349326i
\(898\) 0 0
\(899\) −5.42866 −0.181056
\(900\) 0 0
\(901\) −17.2662 −0.575220
\(902\) 0 0
\(903\) − 0.490075i − 0.0163087i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 42.6695i − 1.41682i −0.705803 0.708408i \(-0.749414\pi\)
0.705803 0.708408i \(-0.250586\pi\)
\(908\) 0 0
\(909\) −13.8071 −0.457954
\(910\) 0 0
\(911\) −3.31314 −0.109769 −0.0548845 0.998493i \(-0.517479\pi\)
−0.0548845 + 0.998493i \(0.517479\pi\)
\(912\) 0 0
\(913\) 7.81684i 0.258700i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 51.1217i − 1.68819i
\(918\) 0 0
\(919\) −10.3050 −0.339932 −0.169966 0.985450i \(-0.554366\pi\)
−0.169966 + 0.985450i \(0.554366\pi\)
\(920\) 0 0
\(921\) −5.68526 −0.187336
\(922\) 0 0
\(923\) − 13.1114i − 0.431566i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 12.6252i − 0.414666i
\(928\) 0 0
\(929\) 1.66298 0.0545607 0.0272804 0.999628i \(-0.491315\pi\)
0.0272804 + 0.999628i \(0.491315\pi\)
\(930\) 0 0
\(931\) −3.59741 −0.117900
\(932\) 0 0
\(933\) − 25.6472i − 0.839652i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.19367i 0.0389954i 0.999810 + 0.0194977i \(0.00620671\pi\)
−0.999810 + 0.0194977i \(0.993793\pi\)
\(938\) 0 0
\(939\) 4.66934 0.152378
\(940\) 0 0
\(941\) 28.8387 0.940116 0.470058 0.882636i \(-0.344233\pi\)
0.470058 + 0.882636i \(0.344233\pi\)
\(942\) 0 0
\(943\) − 14.0150i − 0.456391i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 28.4650i − 0.924989i −0.886622 0.462495i \(-0.846954\pi\)
0.886622 0.462495i \(-0.153046\pi\)
\(948\) 0 0
\(949\) −21.9674 −0.713091
\(950\) 0 0
\(951\) −9.49240 −0.307812
\(952\) 0 0
\(953\) 38.7750i 1.25605i 0.778195 + 0.628023i \(0.216136\pi\)
−0.778195 + 0.628023i \(0.783864\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 2.26227i − 0.0731289i
\(958\) 0 0
\(959\) −35.0991 −1.13341
\(960\) 0 0
\(961\) −27.8383 −0.898010
\(962\) 0 0
\(963\) − 9.14322i − 0.294636i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 8.30570i 0.267093i 0.991043 + 0.133547i \(0.0426366\pi\)
−0.991043 + 0.133547i \(0.957363\pi\)
\(968\) 0 0
\(969\) −1.35902 −0.0436581
\(970\) 0 0
\(971\) 28.9609 0.929398 0.464699 0.885469i \(-0.346162\pi\)
0.464699 + 0.885469i \(0.346162\pi\)
\(972\) 0 0
\(973\) − 54.2018i − 1.73763i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 49.0411i 1.56896i 0.620152 + 0.784481i \(0.287071\pi\)
−0.620152 + 0.784481i \(0.712929\pi\)
\(978\) 0 0
\(979\) −1.18844 −0.0379826
\(980\) 0 0
\(981\) 9.23781 0.294941
\(982\) 0 0
\(983\) 22.1108i 0.705226i 0.935769 + 0.352613i \(0.114707\pi\)
−0.935769 + 0.352613i \(0.885293\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 8.91873i 0.283886i
\(988\) 0 0
\(989\) −0.399905 −0.0127162
\(990\) 0 0
\(991\) −6.69228 −0.212587 −0.106294 0.994335i \(-0.533898\pi\)
−0.106294 + 0.994335i \(0.533898\pi\)
\(992\) 0 0
\(993\) 22.2875i 0.707273i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 49.5535i 1.56938i 0.619891 + 0.784688i \(0.287177\pi\)
−0.619891 + 0.784688i \(0.712823\pi\)
\(998\) 0 0
\(999\) −4.89297 −0.154807
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6000.2.f.p.1249.3 8
4.3 odd 2 3000.2.f.h.1249.6 8
5.2 odd 4 6000.2.a.bc.1.2 4
5.3 odd 4 6000.2.a.bl.1.3 4
5.4 even 2 inner 6000.2.f.p.1249.6 8
20.3 even 4 3000.2.a.j.1.2 4
20.7 even 4 3000.2.a.o.1.3 yes 4
20.19 odd 2 3000.2.f.h.1249.3 8
60.23 odd 4 9000.2.a.t.1.2 4
60.47 odd 4 9000.2.a.y.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3000.2.a.j.1.2 4 20.3 even 4
3000.2.a.o.1.3 yes 4 20.7 even 4
3000.2.f.h.1249.3 8 20.19 odd 2
3000.2.f.h.1249.6 8 4.3 odd 2
6000.2.a.bc.1.2 4 5.2 odd 4
6000.2.a.bl.1.3 4 5.3 odd 4
6000.2.f.p.1249.3 8 1.1 even 1 trivial
6000.2.f.p.1249.6 8 5.4 even 2 inner
9000.2.a.t.1.2 4 60.23 odd 4
9000.2.a.y.1.3 4 60.47 odd 4