Properties

Label 6000.2.f.p.1249.1
Level $6000$
Weight $2$
Character 6000.1249
Analytic conductor $47.910$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6000,2,Mod(1249,6000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6000.1249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6000 = 2^{4} \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6000.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.9102412128\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.566105760000.21
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 45x^{6} + 728x^{4} + 4965x^{2} + 11881 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3000)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.1
Root \(-3.97706i\) of defining polynomial
Character \(\chi\) \(=\) 6000.1249
Dual form 6000.2.f.p.1249.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} -2.97706i q^{7} -1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{3} -2.97706i q^{7} -1.00000 q^{9} -5.59509 q^{11} -6.43501i q^{13} -1.61803i q^{17} -3.07599 q^{19} -2.97706 q^{21} +3.59509i q^{23} +1.00000i q^{27} -7.19894 q^{29} -5.69402 q^{31} +5.59509i q^{33} -9.27493i q^{37} -6.43501 q^{39} +11.4492 q^{41} -0.145898i q^{43} +12.9071i q^{47} -1.86287 q^{49} -1.61803 q^{51} -0.419089i q^{53} +3.07599i q^{57} +5.54379 q^{59} -11.8471 q^{61} +2.97706i q^{63} +6.91525i q^{67} +3.59509 q^{69} +6.81698 q^{71} +3.33500i q^{73} +16.6569i q^{77} -6.30329 q^{79} +1.00000 q^{81} -8.45903i q^{83} +7.19894i q^{87} +2.31206 q^{89} -19.1574 q^{91} +5.69402i q^{93} +9.44919i q^{97} +5.59509 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{9} - 6 q^{11} + 6 q^{21} - 30 q^{29} - 12 q^{31} - 6 q^{39} + 26 q^{41} - 38 q^{49} - 4 q^{51} + 16 q^{59} + 26 q^{61} - 10 q^{69} + 18 q^{71} + 42 q^{79} + 8 q^{81} - 24 q^{89} - 34 q^{91} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6000\mathbb{Z}\right)^\times\).

\(n\) \(751\) \(4001\) \(4501\) \(5377\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 2.97706i − 1.12522i −0.826722 0.562611i \(-0.809797\pi\)
0.826722 0.562611i \(-0.190203\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −5.59509 −1.68698 −0.843492 0.537142i \(-0.819504\pi\)
−0.843492 + 0.537142i \(0.819504\pi\)
\(12\) 0 0
\(13\) − 6.43501i − 1.78475i −0.451293 0.892376i \(-0.649037\pi\)
0.451293 0.892376i \(-0.350963\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 1.61803i − 0.392431i −0.980561 0.196215i \(-0.937135\pi\)
0.980561 0.196215i \(-0.0628652\pi\)
\(18\) 0 0
\(19\) −3.07599 −0.705681 −0.352840 0.935684i \(-0.614784\pi\)
−0.352840 + 0.935684i \(0.614784\pi\)
\(20\) 0 0
\(21\) −2.97706 −0.649647
\(22\) 0 0
\(23\) 3.59509i 0.749628i 0.927100 + 0.374814i \(0.122293\pi\)
−0.927100 + 0.374814i \(0.877707\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −7.19894 −1.33681 −0.668405 0.743797i \(-0.733023\pi\)
−0.668405 + 0.743797i \(0.733023\pi\)
\(30\) 0 0
\(31\) −5.69402 −1.02268 −0.511338 0.859379i \(-0.670850\pi\)
−0.511338 + 0.859379i \(0.670850\pi\)
\(32\) 0 0
\(33\) 5.59509i 0.973980i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 9.27493i − 1.52479i −0.647112 0.762395i \(-0.724023\pi\)
0.647112 0.762395i \(-0.275977\pi\)
\(38\) 0 0
\(39\) −6.43501 −1.03043
\(40\) 0 0
\(41\) 11.4492 1.78806 0.894032 0.448004i \(-0.147865\pi\)
0.894032 + 0.448004i \(0.147865\pi\)
\(42\) 0 0
\(43\) − 0.145898i − 0.0222492i −0.999938 0.0111246i \(-0.996459\pi\)
0.999938 0.0111246i \(-0.00354115\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12.9071i 1.88270i 0.337430 + 0.941351i \(0.390442\pi\)
−0.337430 + 0.941351i \(0.609558\pi\)
\(48\) 0 0
\(49\) −1.86287 −0.266124
\(50\) 0 0
\(51\) −1.61803 −0.226570
\(52\) 0 0
\(53\) − 0.419089i − 0.0575663i −0.999586 0.0287832i \(-0.990837\pi\)
0.999586 0.0287832i \(-0.00916323\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.07599i 0.407425i
\(58\) 0 0
\(59\) 5.54379 0.721740 0.360870 0.932616i \(-0.382480\pi\)
0.360870 + 0.932616i \(0.382480\pi\)
\(60\) 0 0
\(61\) −11.8471 −1.51686 −0.758432 0.651753i \(-0.774034\pi\)
−0.758432 + 0.651753i \(0.774034\pi\)
\(62\) 0 0
\(63\) 2.97706i 0.375074i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.91525i 0.844832i 0.906402 + 0.422416i \(0.138818\pi\)
−0.906402 + 0.422416i \(0.861182\pi\)
\(68\) 0 0
\(69\) 3.59509 0.432798
\(70\) 0 0
\(71\) 6.81698 0.809027 0.404513 0.914532i \(-0.367441\pi\)
0.404513 + 0.914532i \(0.367441\pi\)
\(72\) 0 0
\(73\) 3.33500i 0.390332i 0.980770 + 0.195166i \(0.0625246\pi\)
−0.980770 + 0.195166i \(0.937475\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 16.6569i 1.89823i
\(78\) 0 0
\(79\) −6.30329 −0.709176 −0.354588 0.935023i \(-0.615379\pi\)
−0.354588 + 0.935023i \(0.615379\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 8.45903i − 0.928500i −0.885704 0.464250i \(-0.846324\pi\)
0.885704 0.464250i \(-0.153676\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 7.19894i 0.771808i
\(88\) 0 0
\(89\) 2.31206 0.245078 0.122539 0.992464i \(-0.460896\pi\)
0.122539 + 0.992464i \(0.460896\pi\)
\(90\) 0 0
\(91\) −19.1574 −2.00824
\(92\) 0 0
\(93\) 5.69402i 0.590443i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 9.44919i 0.959420i 0.877427 + 0.479710i \(0.159258\pi\)
−0.877427 + 0.479710i \(0.840742\pi\)
\(98\) 0 0
\(99\) 5.59509 0.562328
\(100\) 0 0
\(101\) 16.2273 1.61468 0.807339 0.590089i \(-0.200907\pi\)
0.807339 + 0.590089i \(0.200907\pi\)
\(102\) 0 0
\(103\) − 10.2990i − 1.01479i −0.861715 0.507393i \(-0.830609\pi\)
0.861715 0.507393i \(-0.169391\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1.10877i − 0.107189i −0.998563 0.0535946i \(-0.982932\pi\)
0.998563 0.0535946i \(-0.0170679\pi\)
\(108\) 0 0
\(109\) 15.1821 1.45418 0.727090 0.686542i \(-0.240872\pi\)
0.727090 + 0.686542i \(0.240872\pi\)
\(110\) 0 0
\(111\) −9.27493 −0.880338
\(112\) 0 0
\(113\) − 5.48090i − 0.515600i −0.966198 0.257800i \(-0.917002\pi\)
0.966198 0.257800i \(-0.0829975\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6.43501i 0.594917i
\(118\) 0 0
\(119\) −4.81698 −0.441572
\(120\) 0 0
\(121\) 20.3050 1.84591
\(122\) 0 0
\(123\) − 11.4492i − 1.03234i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 3.39615i 0.301359i 0.988583 + 0.150680i \(0.0481462\pi\)
−0.988583 + 0.150680i \(0.951854\pi\)
\(128\) 0 0
\(129\) −0.145898 −0.0128456
\(130\) 0 0
\(131\) −1.05130 −0.0918528 −0.0459264 0.998945i \(-0.514624\pi\)
−0.0459264 + 0.998945i \(0.514624\pi\)
\(132\) 0 0
\(133\) 9.15740i 0.794047i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.11311i 0.351407i 0.984443 + 0.175703i \(0.0562200\pi\)
−0.984443 + 0.175703i \(0.943780\pi\)
\(138\) 0 0
\(139\) 20.9559 1.77745 0.888726 0.458438i \(-0.151591\pi\)
0.888726 + 0.458438i \(0.151591\pi\)
\(140\) 0 0
\(141\) 12.9071 1.08698
\(142\) 0 0
\(143\) 36.0045i 3.01085i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.86287i 0.153647i
\(148\) 0 0
\(149\) −10.8781 −0.891171 −0.445585 0.895239i \(-0.647004\pi\)
−0.445585 + 0.895239i \(0.647004\pi\)
\(150\) 0 0
\(151\) −15.9530 −1.29824 −0.649120 0.760686i \(-0.724863\pi\)
−0.649120 + 0.760686i \(0.724863\pi\)
\(152\) 0 0
\(153\) 1.61803i 0.130810i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 21.8744i 1.74576i 0.487931 + 0.872882i \(0.337752\pi\)
−0.487931 + 0.872882i \(0.662248\pi\)
\(158\) 0 0
\(159\) −0.419089 −0.0332359
\(160\) 0 0
\(161\) 10.7028 0.843498
\(162\) 0 0
\(163\) − 18.1432i − 1.42109i −0.703654 0.710543i \(-0.748449\pi\)
0.703654 0.710543i \(-0.251551\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.18910i 0.401545i 0.979638 + 0.200772i \(0.0643452\pi\)
−0.979638 + 0.200772i \(0.935655\pi\)
\(168\) 0 0
\(169\) −28.4094 −2.18534
\(170\) 0 0
\(171\) 3.07599 0.235227
\(172\) 0 0
\(173\) − 18.9771i − 1.44280i −0.692519 0.721399i \(-0.743499\pi\)
0.692519 0.721399i \(-0.256501\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 5.54379i − 0.416697i
\(178\) 0 0
\(179\) −11.9744 −0.895007 −0.447503 0.894282i \(-0.647687\pi\)
−0.447503 + 0.894282i \(0.647687\pi\)
\(180\) 0 0
\(181\) 11.5881 0.861334 0.430667 0.902511i \(-0.358278\pi\)
0.430667 + 0.902511i \(0.358278\pi\)
\(182\) 0 0
\(183\) 11.8471i 0.875761i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 9.05305i 0.662024i
\(188\) 0 0
\(189\) 2.97706 0.216549
\(190\) 0 0
\(191\) 12.8322 0.928508 0.464254 0.885702i \(-0.346322\pi\)
0.464254 + 0.885702i \(0.346322\pi\)
\(192\) 0 0
\(193\) 9.15024i 0.658648i 0.944217 + 0.329324i \(0.106821\pi\)
−0.944217 + 0.329324i \(0.893179\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.45187i 0.602171i 0.953597 + 0.301086i \(0.0973490\pi\)
−0.953597 + 0.301086i \(0.902651\pi\)
\(198\) 0 0
\(199\) −18.0231 −1.27762 −0.638811 0.769364i \(-0.720574\pi\)
−0.638811 + 0.769364i \(0.720574\pi\)
\(200\) 0 0
\(201\) 6.91525 0.487764
\(202\) 0 0
\(203\) 21.4317i 1.50421i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 3.59509i − 0.249876i
\(208\) 0 0
\(209\) 17.2104 1.19047
\(210\) 0 0
\(211\) −7.11245 −0.489641 −0.244821 0.969568i \(-0.578729\pi\)
−0.244821 + 0.969568i \(0.578729\pi\)
\(212\) 0 0
\(213\) − 6.81698i − 0.467092i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 16.9514i 1.15074i
\(218\) 0 0
\(219\) 3.33500 0.225359
\(220\) 0 0
\(221\) −10.4121 −0.700392
\(222\) 0 0
\(223\) − 24.7383i − 1.65660i −0.560285 0.828300i \(-0.689308\pi\)
0.560285 0.828300i \(-0.310692\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 20.2581i 1.34458i 0.740290 + 0.672288i \(0.234688\pi\)
−0.740290 + 0.672288i \(0.765312\pi\)
\(228\) 0 0
\(229\) −2.20002 −0.145382 −0.0726908 0.997355i \(-0.523159\pi\)
−0.0726908 + 0.997355i \(0.523159\pi\)
\(230\) 0 0
\(231\) 16.6569 1.09594
\(232\) 0 0
\(233\) − 1.55189i − 0.101667i −0.998707 0.0508337i \(-0.983812\pi\)
0.998707 0.0508337i \(-0.0161878\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 6.30329i 0.409443i
\(238\) 0 0
\(239\) −5.98690 −0.387260 −0.193630 0.981075i \(-0.562026\pi\)
−0.193630 + 0.981075i \(0.562026\pi\)
\(240\) 0 0
\(241\) −17.4368 −1.12320 −0.561600 0.827409i \(-0.689814\pi\)
−0.561600 + 0.827409i \(0.689814\pi\)
\(242\) 0 0
\(243\) − 1.00000i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 19.7940i 1.25946i
\(248\) 0 0
\(249\) −8.45903 −0.536069
\(250\) 0 0
\(251\) −15.4580 −0.975698 −0.487849 0.872928i \(-0.662218\pi\)
−0.487849 + 0.872928i \(0.662218\pi\)
\(252\) 0 0
\(253\) − 20.1149i − 1.26461i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 9.74881i − 0.608114i −0.952654 0.304057i \(-0.901659\pi\)
0.952654 0.304057i \(-0.0983414\pi\)
\(258\) 0 0
\(259\) −27.6120 −1.71573
\(260\) 0 0
\(261\) 7.19894 0.445603
\(262\) 0 0
\(263\) 7.81590i 0.481949i 0.970531 + 0.240975i \(0.0774670\pi\)
−0.970531 + 0.240975i \(0.922533\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 2.31206i − 0.141496i
\(268\) 0 0
\(269\) −14.3640 −0.875790 −0.437895 0.899026i \(-0.644276\pi\)
−0.437895 + 0.899026i \(0.644276\pi\)
\(270\) 0 0
\(271\) 7.68418 0.466781 0.233390 0.972383i \(-0.425018\pi\)
0.233390 + 0.972383i \(0.425018\pi\)
\(272\) 0 0
\(273\) 19.1574i 1.15946i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 4.92307i − 0.295799i −0.989002 0.147899i \(-0.952749\pi\)
0.989002 0.147899i \(-0.0472512\pi\)
\(278\) 0 0
\(279\) 5.69402 0.340892
\(280\) 0 0
\(281\) −15.1371 −0.903006 −0.451503 0.892270i \(-0.649112\pi\)
−0.451503 + 0.892270i \(0.649112\pi\)
\(282\) 0 0
\(283\) 20.8914i 1.24186i 0.783865 + 0.620931i \(0.213245\pi\)
−0.783865 + 0.620931i \(0.786755\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 34.0849i − 2.01197i
\(288\) 0 0
\(289\) 14.3820 0.845998
\(290\) 0 0
\(291\) 9.44919 0.553921
\(292\) 0 0
\(293\) − 13.2820i − 0.775940i −0.921672 0.387970i \(-0.873176\pi\)
0.921672 0.387970i \(-0.126824\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 5.59509i − 0.324660i
\(298\) 0 0
\(299\) 23.1345 1.33790
\(300\) 0 0
\(301\) −0.434347 −0.0250353
\(302\) 0 0
\(303\) − 16.2273i − 0.932234i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0.650819i 0.0371442i 0.999828 + 0.0185721i \(0.00591202\pi\)
−0.999828 + 0.0185721i \(0.994088\pi\)
\(308\) 0 0
\(309\) −10.2990 −0.585887
\(310\) 0 0
\(311\) −25.6128 −1.45237 −0.726183 0.687501i \(-0.758708\pi\)
−0.726183 + 0.687501i \(0.758708\pi\)
\(312\) 0 0
\(313\) 18.8372i 1.06474i 0.846511 + 0.532372i \(0.178699\pi\)
−0.846511 + 0.532372i \(0.821301\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 5.57649i − 0.313207i −0.987662 0.156603i \(-0.949946\pi\)
0.987662 0.156603i \(-0.0500544\pi\)
\(318\) 0 0
\(319\) 40.2787 2.25518
\(320\) 0 0
\(321\) −1.10877 −0.0618858
\(322\) 0 0
\(323\) 4.97706i 0.276931i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 15.1821i − 0.839571i
\(328\) 0 0
\(329\) 38.4253 2.11846
\(330\) 0 0
\(331\) 13.3088 0.731518 0.365759 0.930710i \(-0.380810\pi\)
0.365759 + 0.930710i \(0.380810\pi\)
\(332\) 0 0
\(333\) 9.27493i 0.508263i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 16.2122i 0.883134i 0.897228 + 0.441567i \(0.145577\pi\)
−0.897228 + 0.441567i \(0.854423\pi\)
\(338\) 0 0
\(339\) −5.48090 −0.297682
\(340\) 0 0
\(341\) 31.8586 1.72524
\(342\) 0 0
\(343\) − 15.2935i − 0.825774i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 7.18651i − 0.385792i −0.981219 0.192896i \(-0.938212\pi\)
0.981219 0.192896i \(-0.0617880\pi\)
\(348\) 0 0
\(349\) −19.6390 −1.05125 −0.525625 0.850717i \(-0.676168\pi\)
−0.525625 + 0.850717i \(0.676168\pi\)
\(350\) 0 0
\(351\) 6.43501 0.343476
\(352\) 0 0
\(353\) − 10.6099i − 0.564710i −0.959310 0.282355i \(-0.908884\pi\)
0.959310 0.282355i \(-0.0911156\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 4.81698i 0.254942i
\(358\) 0 0
\(359\) −30.3040 −1.59938 −0.799691 0.600412i \(-0.795003\pi\)
−0.799691 + 0.600412i \(0.795003\pi\)
\(360\) 0 0
\(361\) −9.53828 −0.502015
\(362\) 0 0
\(363\) − 20.3050i − 1.06574i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 1.16549i − 0.0608383i −0.999537 0.0304191i \(-0.990316\pi\)
0.999537 0.0304191i \(-0.00968421\pi\)
\(368\) 0 0
\(369\) −11.4492 −0.596021
\(370\) 0 0
\(371\) −1.24765 −0.0647749
\(372\) 0 0
\(373\) − 2.49400i − 0.129135i −0.997913 0.0645673i \(-0.979433\pi\)
0.997913 0.0645673i \(-0.0205667\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 46.3253i 2.38587i
\(378\) 0 0
\(379\) 1.83492 0.0942534 0.0471267 0.998889i \(-0.484994\pi\)
0.0471267 + 0.998889i \(0.484994\pi\)
\(380\) 0 0
\(381\) 3.39615 0.173990
\(382\) 0 0
\(383\) − 16.0646i − 0.820864i −0.911891 0.410432i \(-0.865378\pi\)
0.911891 0.410432i \(-0.134622\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.145898i 0.00741641i
\(388\) 0 0
\(389\) 25.1203 1.27365 0.636824 0.771009i \(-0.280248\pi\)
0.636824 + 0.771009i \(0.280248\pi\)
\(390\) 0 0
\(391\) 5.81698 0.294177
\(392\) 0 0
\(393\) 1.05130i 0.0530312i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 17.6798i 0.887326i 0.896194 + 0.443663i \(0.146321\pi\)
−0.896194 + 0.443663i \(0.853679\pi\)
\(398\) 0 0
\(399\) 9.15740 0.458443
\(400\) 0 0
\(401\) 2.43219 0.121458 0.0607289 0.998154i \(-0.480657\pi\)
0.0607289 + 0.998154i \(0.480657\pi\)
\(402\) 0 0
\(403\) 36.6411i 1.82522i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 51.8941i 2.57230i
\(408\) 0 0
\(409\) 20.3509 1.00629 0.503144 0.864202i \(-0.332176\pi\)
0.503144 + 0.864202i \(0.332176\pi\)
\(410\) 0 0
\(411\) 4.11311 0.202885
\(412\) 0 0
\(413\) − 16.5042i − 0.812117i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 20.9559i − 1.02621i
\(418\) 0 0
\(419\) 24.0158 1.17325 0.586625 0.809859i \(-0.300456\pi\)
0.586625 + 0.809859i \(0.300456\pi\)
\(420\) 0 0
\(421\) −32.6241 −1.59000 −0.795001 0.606608i \(-0.792530\pi\)
−0.795001 + 0.606608i \(0.792530\pi\)
\(422\) 0 0
\(423\) − 12.9071i − 0.627567i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 35.2694i 1.70681i
\(428\) 0 0
\(429\) 36.0045 1.73831
\(430\) 0 0
\(431\) 8.72399 0.420220 0.210110 0.977678i \(-0.432618\pi\)
0.210110 + 0.977678i \(0.432618\pi\)
\(432\) 0 0
\(433\) 33.2307i 1.59697i 0.602018 + 0.798483i \(0.294364\pi\)
−0.602018 + 0.798483i \(0.705636\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 11.0585i − 0.528998i
\(438\) 0 0
\(439\) 22.1581 1.05755 0.528773 0.848763i \(-0.322652\pi\)
0.528773 + 0.848763i \(0.322652\pi\)
\(440\) 0 0
\(441\) 1.86287 0.0887079
\(442\) 0 0
\(443\) − 2.95085i − 0.140199i −0.997540 0.0700996i \(-0.977668\pi\)
0.997540 0.0700996i \(-0.0223317\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 10.8781i 0.514518i
\(448\) 0 0
\(449\) −7.48698 −0.353333 −0.176666 0.984271i \(-0.556531\pi\)
−0.176666 + 0.984271i \(0.556531\pi\)
\(450\) 0 0
\(451\) −64.0593 −3.01643
\(452\) 0 0
\(453\) 15.9530i 0.749539i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 28.7258i 1.34374i 0.740671 + 0.671868i \(0.234508\pi\)
−0.740671 + 0.671868i \(0.765492\pi\)
\(458\) 0 0
\(459\) 1.61803 0.0755234
\(460\) 0 0
\(461\) −16.0034 −0.745353 −0.372676 0.927961i \(-0.621560\pi\)
−0.372676 + 0.927961i \(0.621560\pi\)
\(462\) 0 0
\(463\) − 16.4852i − 0.766134i −0.923721 0.383067i \(-0.874868\pi\)
0.923721 0.383067i \(-0.125132\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.68700i 0.355712i 0.984057 + 0.177856i \(0.0569161\pi\)
−0.984057 + 0.177856i \(0.943084\pi\)
\(468\) 0 0
\(469\) 20.5871 0.950623
\(470\) 0 0
\(471\) 21.8744 1.00792
\(472\) 0 0
\(473\) 0.816313i 0.0375341i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.419089i 0.0191888i
\(478\) 0 0
\(479\) 16.0318 0.732514 0.366257 0.930514i \(-0.380639\pi\)
0.366257 + 0.930514i \(0.380639\pi\)
\(480\) 0 0
\(481\) −59.6843 −2.72137
\(482\) 0 0
\(483\) − 10.7028i − 0.486994i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 18.6066i 0.843145i 0.906795 + 0.421573i \(0.138522\pi\)
−0.906795 + 0.421573i \(0.861478\pi\)
\(488\) 0 0
\(489\) −18.1432 −0.820465
\(490\) 0 0
\(491\) −3.62788 −0.163724 −0.0818619 0.996644i \(-0.526087\pi\)
−0.0818619 + 0.996644i \(0.526087\pi\)
\(492\) 0 0
\(493\) 11.6481i 0.524606i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 20.2945i − 0.910334i
\(498\) 0 0
\(499\) 9.10435 0.407567 0.203783 0.979016i \(-0.434676\pi\)
0.203783 + 0.979016i \(0.434676\pi\)
\(500\) 0 0
\(501\) 5.18910 0.231832
\(502\) 0 0
\(503\) 1.80714i 0.0805763i 0.999188 + 0.0402881i \(0.0128276\pi\)
−0.999188 + 0.0402881i \(0.987172\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 28.4094i 1.26171i
\(508\) 0 0
\(509\) −25.9576 −1.15055 −0.575275 0.817960i \(-0.695105\pi\)
−0.575275 + 0.817960i \(0.695105\pi\)
\(510\) 0 0
\(511\) 9.92849 0.439210
\(512\) 0 0
\(513\) − 3.07599i − 0.135808i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 72.2167i − 3.17609i
\(518\) 0 0
\(519\) −18.9771 −0.833000
\(520\) 0 0
\(521\) −35.4236 −1.55193 −0.775967 0.630773i \(-0.782738\pi\)
−0.775967 + 0.630773i \(0.782738\pi\)
\(522\) 0 0
\(523\) 23.7691i 1.03935i 0.854364 + 0.519675i \(0.173947\pi\)
−0.854364 + 0.519675i \(0.826053\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.21312i 0.401330i
\(528\) 0 0
\(529\) 10.0753 0.438058
\(530\) 0 0
\(531\) −5.54379 −0.240580
\(532\) 0 0
\(533\) − 73.6757i − 3.19125i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 11.9744i 0.516732i
\(538\) 0 0
\(539\) 10.4229 0.448946
\(540\) 0 0
\(541\) 0.931170 0.0400341 0.0200171 0.999800i \(-0.493628\pi\)
0.0200171 + 0.999800i \(0.493628\pi\)
\(542\) 0 0
\(543\) − 11.5881i − 0.497292i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 28.6968i − 1.22698i −0.789701 0.613492i \(-0.789764\pi\)
0.789701 0.613492i \(-0.210236\pi\)
\(548\) 0 0
\(549\) 11.8471 0.505621
\(550\) 0 0
\(551\) 22.1439 0.943361
\(552\) 0 0
\(553\) 18.7653i 0.797980i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 28.5273i 1.20874i 0.796703 + 0.604371i \(0.206576\pi\)
−0.796703 + 0.604371i \(0.793424\pi\)
\(558\) 0 0
\(559\) −0.938856 −0.0397094
\(560\) 0 0
\(561\) 9.05305 0.382220
\(562\) 0 0
\(563\) 35.6411i 1.50209i 0.660249 + 0.751047i \(0.270451\pi\)
−0.660249 + 0.751047i \(0.729549\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 2.97706i − 0.125025i
\(568\) 0 0
\(569\) −28.8728 −1.21041 −0.605205 0.796070i \(-0.706909\pi\)
−0.605205 + 0.796070i \(0.706909\pi\)
\(570\) 0 0
\(571\) 16.7217 0.699782 0.349891 0.936790i \(-0.386219\pi\)
0.349891 + 0.936790i \(0.386219\pi\)
\(572\) 0 0
\(573\) − 12.8322i − 0.536074i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 11.5022i 0.478844i 0.970916 + 0.239422i \(0.0769580\pi\)
−0.970916 + 0.239422i \(0.923042\pi\)
\(578\) 0 0
\(579\) 9.15024 0.380271
\(580\) 0 0
\(581\) −25.1830 −1.04477
\(582\) 0 0
\(583\) 2.34484i 0.0971135i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22.5701i 0.931569i 0.884898 + 0.465785i \(0.154228\pi\)
−0.884898 + 0.465785i \(0.845772\pi\)
\(588\) 0 0
\(589\) 17.5148 0.721683
\(590\) 0 0
\(591\) 8.45187 0.347664
\(592\) 0 0
\(593\) 47.2237i 1.93924i 0.244608 + 0.969622i \(0.421341\pi\)
−0.244608 + 0.969622i \(0.578659\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 18.0231i 0.737636i
\(598\) 0 0
\(599\) −2.79672 −0.114271 −0.0571354 0.998366i \(-0.518197\pi\)
−0.0571354 + 0.998366i \(0.518197\pi\)
\(600\) 0 0
\(601\) −14.2935 −0.583042 −0.291521 0.956564i \(-0.594161\pi\)
−0.291521 + 0.956564i \(0.594161\pi\)
\(602\) 0 0
\(603\) − 6.91525i − 0.281611i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 12.8876i 0.523090i 0.965191 + 0.261545i \(0.0842319\pi\)
−0.965191 + 0.261545i \(0.915768\pi\)
\(608\) 0 0
\(609\) 21.4317 0.868455
\(610\) 0 0
\(611\) 83.0577 3.36015
\(612\) 0 0
\(613\) − 14.1722i − 0.572411i −0.958168 0.286206i \(-0.907606\pi\)
0.958168 0.286206i \(-0.0923941\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 10.7558i − 0.433014i −0.976281 0.216507i \(-0.930534\pi\)
0.976281 0.216507i \(-0.0694663\pi\)
\(618\) 0 0
\(619\) −40.2143 −1.61635 −0.808175 0.588942i \(-0.799545\pi\)
−0.808175 + 0.588942i \(0.799545\pi\)
\(620\) 0 0
\(621\) −3.59509 −0.144266
\(622\) 0 0
\(623\) − 6.88313i − 0.275767i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 17.2104i − 0.687319i
\(628\) 0 0
\(629\) −15.0072 −0.598375
\(630\) 0 0
\(631\) 3.16710 0.126080 0.0630401 0.998011i \(-0.479920\pi\)
0.0630401 + 0.998011i \(0.479920\pi\)
\(632\) 0 0
\(633\) 7.11245i 0.282694i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 11.9876i 0.474965i
\(638\) 0 0
\(639\) −6.81698 −0.269676
\(640\) 0 0
\(641\) −8.93559 −0.352935 −0.176467 0.984306i \(-0.556467\pi\)
−0.176467 + 0.984306i \(0.556467\pi\)
\(642\) 0 0
\(643\) − 17.5289i − 0.691274i −0.938368 0.345637i \(-0.887663\pi\)
0.938368 0.345637i \(-0.112337\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0.0600668i 0.00236147i 0.999999 + 0.00118073i \(0.000375840\pi\)
−0.999999 + 0.00118073i \(0.999624\pi\)
\(648\) 0 0
\(649\) −31.0180 −1.21756
\(650\) 0 0
\(651\) 16.9514 0.664379
\(652\) 0 0
\(653\) − 5.63396i − 0.220474i −0.993905 0.110237i \(-0.964839\pi\)
0.993905 0.110237i \(-0.0351610\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 3.33500i − 0.130111i
\(658\) 0 0
\(659\) −39.1355 −1.52450 −0.762252 0.647280i \(-0.775906\pi\)
−0.762252 + 0.647280i \(0.775906\pi\)
\(660\) 0 0
\(661\) −13.8720 −0.539556 −0.269778 0.962922i \(-0.586950\pi\)
−0.269778 + 0.962922i \(0.586950\pi\)
\(662\) 0 0
\(663\) 10.4121i 0.404371i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 25.8809i − 1.00211i
\(668\) 0 0
\(669\) −24.7383 −0.956438
\(670\) 0 0
\(671\) 66.2855 2.55892
\(672\) 0 0
\(673\) − 18.5323i − 0.714369i −0.934034 0.357185i \(-0.883737\pi\)
0.934034 0.357185i \(-0.116263\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 35.6361i 1.36961i 0.728728 + 0.684804i \(0.240112\pi\)
−0.728728 + 0.684804i \(0.759888\pi\)
\(678\) 0 0
\(679\) 28.1308 1.07956
\(680\) 0 0
\(681\) 20.2581 0.776291
\(682\) 0 0
\(683\) 30.4749i 1.16609i 0.812440 + 0.583044i \(0.198139\pi\)
−0.812440 + 0.583044i \(0.801861\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 2.20002i 0.0839361i
\(688\) 0 0
\(689\) −2.69685 −0.102742
\(690\) 0 0
\(691\) −16.5208 −0.628479 −0.314240 0.949344i \(-0.601750\pi\)
−0.314240 + 0.949344i \(0.601750\pi\)
\(692\) 0 0
\(693\) − 16.6569i − 0.632743i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 18.5252i − 0.701691i
\(698\) 0 0
\(699\) −1.55189 −0.0586977
\(700\) 0 0
\(701\) 6.68728 0.252575 0.126287 0.991994i \(-0.459694\pi\)
0.126287 + 0.991994i \(0.459694\pi\)
\(702\) 0 0
\(703\) 28.5296i 1.07601i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 48.3096i − 1.81687i
\(708\) 0 0
\(709\) 4.84628 0.182006 0.0910029 0.995851i \(-0.470993\pi\)
0.0910029 + 0.995851i \(0.470993\pi\)
\(710\) 0 0
\(711\) 6.30329 0.236392
\(712\) 0 0
\(713\) − 20.4705i − 0.766627i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 5.98690i 0.223585i
\(718\) 0 0
\(719\) 36.6303 1.36608 0.683041 0.730380i \(-0.260657\pi\)
0.683041 + 0.730380i \(0.260657\pi\)
\(720\) 0 0
\(721\) −30.6606 −1.14186
\(722\) 0 0
\(723\) 17.4368i 0.648480i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 2.36143i − 0.0875807i −0.999041 0.0437903i \(-0.986057\pi\)
0.999041 0.0437903i \(-0.0139434\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −0.236068 −0.00873129
\(732\) 0 0
\(733\) 3.19126i 0.117872i 0.998262 + 0.0589359i \(0.0187708\pi\)
−0.998262 + 0.0589359i \(0.981229\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 38.6914i − 1.42522i
\(738\) 0 0
\(739\) −53.3412 −1.96219 −0.981094 0.193530i \(-0.938006\pi\)
−0.981094 + 0.193530i \(0.938006\pi\)
\(740\) 0 0
\(741\) 19.7940 0.727152
\(742\) 0 0
\(743\) 37.2497i 1.36656i 0.730157 + 0.683280i \(0.239447\pi\)
−0.730157 + 0.683280i \(0.760553\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 8.45903i 0.309500i
\(748\) 0 0
\(749\) −3.30089 −0.120612
\(750\) 0 0
\(751\) −39.5540 −1.44334 −0.721672 0.692235i \(-0.756626\pi\)
−0.721672 + 0.692235i \(0.756626\pi\)
\(752\) 0 0
\(753\) 15.4580i 0.563319i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 17.0039i − 0.618017i −0.951059 0.309009i \(-0.900003\pi\)
0.951059 0.309009i \(-0.0999972\pi\)
\(758\) 0 0
\(759\) −20.1149 −0.730123
\(760\) 0 0
\(761\) 40.6662 1.47415 0.737075 0.675811i \(-0.236207\pi\)
0.737075 + 0.675811i \(0.236207\pi\)
\(762\) 0 0
\(763\) − 45.1979i − 1.63627i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 35.6743i − 1.28813i
\(768\) 0 0
\(769\) −4.31197 −0.155494 −0.0777468 0.996973i \(-0.524773\pi\)
−0.0777468 + 0.996973i \(0.524773\pi\)
\(770\) 0 0
\(771\) −9.74881 −0.351095
\(772\) 0 0
\(773\) − 21.1022i − 0.758993i −0.925193 0.379497i \(-0.876097\pi\)
0.925193 0.379497i \(-0.123903\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 27.6120i 0.990575i
\(778\) 0 0
\(779\) −35.2176 −1.26180
\(780\) 0 0
\(781\) −38.1416 −1.36481
\(782\) 0 0
\(783\) − 7.19894i − 0.257269i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 35.6296i − 1.27006i −0.772488 0.635029i \(-0.780988\pi\)
0.772488 0.635029i \(-0.219012\pi\)
\(788\) 0 0
\(789\) 7.81590 0.278253
\(790\) 0 0
\(791\) −16.3169 −0.580164
\(792\) 0 0
\(793\) 76.2361i 2.70722i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 35.1353i − 1.24455i −0.782797 0.622277i \(-0.786208\pi\)
0.782797 0.622277i \(-0.213792\pi\)
\(798\) 0 0
\(799\) 20.8842 0.738830
\(800\) 0 0
\(801\) −2.31206 −0.0816926
\(802\) 0 0
\(803\) − 18.6596i − 0.658484i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 14.3640i 0.505638i
\(808\) 0 0
\(809\) 0.0908359 0.00319362 0.00159681 0.999999i \(-0.499492\pi\)
0.00159681 + 0.999999i \(0.499492\pi\)
\(810\) 0 0
\(811\) 3.09125 0.108548 0.0542742 0.998526i \(-0.482715\pi\)
0.0542742 + 0.998526i \(0.482715\pi\)
\(812\) 0 0
\(813\) − 7.68418i − 0.269496i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0.448781i 0.0157009i
\(818\) 0 0
\(819\) 19.1574 0.669414
\(820\) 0 0
\(821\) 26.8171 0.935924 0.467962 0.883749i \(-0.344988\pi\)
0.467962 + 0.883749i \(0.344988\pi\)
\(822\) 0 0
\(823\) − 8.66133i − 0.301915i −0.988540 0.150957i \(-0.951764\pi\)
0.988540 0.150957i \(-0.0482356\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 54.9171i 1.90966i 0.297160 + 0.954828i \(0.403961\pi\)
−0.297160 + 0.954828i \(0.596039\pi\)
\(828\) 0 0
\(829\) −27.2963 −0.948039 −0.474019 0.880514i \(-0.657197\pi\)
−0.474019 + 0.880514i \(0.657197\pi\)
\(830\) 0 0
\(831\) −4.92307 −0.170779
\(832\) 0 0
\(833\) 3.01418i 0.104435i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 5.69402i − 0.196814i
\(838\) 0 0
\(839\) 26.1547 0.902961 0.451481 0.892281i \(-0.350896\pi\)
0.451481 + 0.892281i \(0.350896\pi\)
\(840\) 0 0
\(841\) 22.8248 0.787062
\(842\) 0 0
\(843\) 15.1371i 0.521351i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 60.4492i − 2.07706i
\(848\) 0 0
\(849\) 20.8914 0.716990
\(850\) 0 0
\(851\) 33.3442 1.14303
\(852\) 0 0
\(853\) 15.7614i 0.539660i 0.962908 + 0.269830i \(0.0869675\pi\)
−0.962908 + 0.269830i \(0.913033\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 8.76868i − 0.299532i −0.988721 0.149766i \(-0.952148\pi\)
0.988721 0.149766i \(-0.0478521\pi\)
\(858\) 0 0
\(859\) −39.6170 −1.35171 −0.675857 0.737032i \(-0.736227\pi\)
−0.675857 + 0.737032i \(0.736227\pi\)
\(860\) 0 0
\(861\) −34.0849 −1.16161
\(862\) 0 0
\(863\) − 15.7727i − 0.536911i −0.963292 0.268455i \(-0.913487\pi\)
0.963292 0.268455i \(-0.0865132\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 14.3820i − 0.488437i
\(868\) 0 0
\(869\) 35.2675 1.19637
\(870\) 0 0
\(871\) 44.4997 1.50781
\(872\) 0 0
\(873\) − 9.44919i − 0.319807i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 52.2422i − 1.76409i −0.471162 0.882047i \(-0.656165\pi\)
0.471162 0.882047i \(-0.343835\pi\)
\(878\) 0 0
\(879\) −13.2820 −0.447989
\(880\) 0 0
\(881\) 13.3902 0.451127 0.225564 0.974228i \(-0.427578\pi\)
0.225564 + 0.974228i \(0.427578\pi\)
\(882\) 0 0
\(883\) − 57.4075i − 1.93192i −0.258698 0.965958i \(-0.583293\pi\)
0.258698 0.965958i \(-0.416707\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 36.0967i − 1.21201i −0.795462 0.606004i \(-0.792772\pi\)
0.795462 0.606004i \(-0.207228\pi\)
\(888\) 0 0
\(889\) 10.1105 0.339096
\(890\) 0 0
\(891\) −5.59509 −0.187443
\(892\) 0 0
\(893\) − 39.7023i − 1.32859i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 23.1345i − 0.772437i
\(898\) 0 0
\(899\) 40.9910 1.36713
\(900\) 0 0
\(901\) −0.678101 −0.0225908
\(902\) 0 0
\(903\) 0.434347i 0.0144542i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 7.07317i − 0.234861i −0.993081 0.117430i \(-0.962534\pi\)
0.993081 0.117430i \(-0.0374657\pi\)
\(908\) 0 0
\(909\) −16.2273 −0.538226
\(910\) 0 0
\(911\) 15.6951 0.520002 0.260001 0.965608i \(-0.416277\pi\)
0.260001 + 0.965608i \(0.416277\pi\)
\(912\) 0 0
\(913\) 47.3291i 1.56636i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.12979i 0.103355i
\(918\) 0 0
\(919\) 20.4509 0.674614 0.337307 0.941395i \(-0.390484\pi\)
0.337307 + 0.941395i \(0.390484\pi\)
\(920\) 0 0
\(921\) 0.650819 0.0214452
\(922\) 0 0
\(923\) − 43.8673i − 1.44391i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 10.2990i 0.338262i
\(928\) 0 0
\(929\) −20.3367 −0.667227 −0.333613 0.942710i \(-0.608268\pi\)
−0.333613 + 0.942710i \(0.608268\pi\)
\(930\) 0 0
\(931\) 5.73016 0.187798
\(932\) 0 0
\(933\) 25.6128i 0.838524i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 60.3183i − 1.97051i −0.171086 0.985256i \(-0.554727\pi\)
0.171086 0.985256i \(-0.445273\pi\)
\(938\) 0 0
\(939\) 18.8372 0.614730
\(940\) 0 0
\(941\) −6.18625 −0.201666 −0.100833 0.994903i \(-0.532151\pi\)
−0.100833 + 0.994903i \(0.532151\pi\)
\(942\) 0 0
\(943\) 41.1609i 1.34038i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 32.3809i − 1.05224i −0.850411 0.526120i \(-0.823646\pi\)
0.850411 0.526120i \(-0.176354\pi\)
\(948\) 0 0
\(949\) 21.4608 0.696646
\(950\) 0 0
\(951\) −5.57649 −0.180830
\(952\) 0 0
\(953\) 38.2037i 1.23754i 0.785573 + 0.618770i \(0.212369\pi\)
−0.785573 + 0.618770i \(0.787631\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 40.2787i − 1.30203i
\(958\) 0 0
\(959\) 12.2450 0.395411
\(960\) 0 0
\(961\) 1.42191 0.0458681
\(962\) 0 0
\(963\) 1.10877i 0.0357298i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 31.7778i − 1.02191i −0.859609 0.510953i \(-0.829293\pi\)
0.859609 0.510953i \(-0.170707\pi\)
\(968\) 0 0
\(969\) 4.97706 0.159886
\(970\) 0 0
\(971\) −0.870691 −0.0279418 −0.0139709 0.999902i \(-0.504447\pi\)
−0.0139709 + 0.999902i \(0.504447\pi\)
\(972\) 0 0
\(973\) − 62.3868i − 2.00003i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 14.3197i − 0.458128i −0.973411 0.229064i \(-0.926433\pi\)
0.973411 0.229064i \(-0.0735666\pi\)
\(978\) 0 0
\(979\) −12.9362 −0.413442
\(980\) 0 0
\(981\) −15.1821 −0.484727
\(982\) 0 0
\(983\) 12.4302i 0.396461i 0.980155 + 0.198231i \(0.0635195\pi\)
−0.980155 + 0.198231i \(0.936481\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 38.4253i − 1.22309i
\(988\) 0 0
\(989\) 0.524517 0.0166787
\(990\) 0 0
\(991\) −27.1963 −0.863918 −0.431959 0.901893i \(-0.642177\pi\)
−0.431959 + 0.901893i \(0.642177\pi\)
\(992\) 0 0
\(993\) − 13.3088i − 0.422342i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 47.1334i 1.49273i 0.665537 + 0.746364i \(0.268202\pi\)
−0.665537 + 0.746364i \(0.731798\pi\)
\(998\) 0 0
\(999\) 9.27493 0.293446
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6000.2.f.p.1249.1 8
4.3 odd 2 3000.2.f.h.1249.8 8
5.2 odd 4 6000.2.a.bc.1.4 4
5.3 odd 4 6000.2.a.bl.1.1 4
5.4 even 2 inner 6000.2.f.p.1249.8 8
20.3 even 4 3000.2.a.j.1.4 4
20.7 even 4 3000.2.a.o.1.1 yes 4
20.19 odd 2 3000.2.f.h.1249.1 8
60.23 odd 4 9000.2.a.t.1.4 4
60.47 odd 4 9000.2.a.y.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3000.2.a.j.1.4 4 20.3 even 4
3000.2.a.o.1.1 yes 4 20.7 even 4
3000.2.f.h.1249.1 8 20.19 odd 2
3000.2.f.h.1249.8 8 4.3 odd 2
6000.2.a.bc.1.4 4 5.2 odd 4
6000.2.a.bl.1.1 4 5.3 odd 4
6000.2.f.p.1249.1 8 1.1 even 1 trivial
6000.2.f.p.1249.8 8 5.4 even 2 inner
9000.2.a.t.1.4 4 60.23 odd 4
9000.2.a.y.1.1 4 60.47 odd 4