Properties

Label 3000.2.a.j.1.4
Level $3000$
Weight $2$
Character 3000.1
Self dual yes
Analytic conductor $23.955$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3000,2,Mod(1,3000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3000 = 2^{3} \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.9551206064\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.47025.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 22x^{2} + 13x + 109 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.35902\) of defining polynomial
Character \(\chi\) \(=\) 3000.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +2.97706 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} +2.97706 q^{7} +1.00000 q^{9} +5.59509 q^{11} +6.43501 q^{13} -1.61803 q^{17} -3.07599 q^{19} -2.97706 q^{21} +3.59509 q^{23} -1.00000 q^{27} +7.19894 q^{29} +5.69402 q^{31} -5.59509 q^{33} -9.27493 q^{37} -6.43501 q^{39} +11.4492 q^{41} -0.145898 q^{43} -12.9071 q^{47} +1.86287 q^{49} +1.61803 q^{51} +0.419089 q^{53} +3.07599 q^{57} +5.54379 q^{59} -11.8471 q^{61} +2.97706 q^{63} -6.91525 q^{67} -3.59509 q^{69} -6.81698 q^{71} -3.33500 q^{73} +16.6569 q^{77} -6.30329 q^{79} +1.00000 q^{81} -8.45903 q^{83} -7.19894 q^{87} -2.31206 q^{89} +19.1574 q^{91} -5.69402 q^{93} +9.44919 q^{97} +5.59509 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 3 q^{7} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{3} - 3 q^{7} + 4 q^{9} + 3 q^{11} + 3 q^{13} - 2 q^{17} + 3 q^{21} - 5 q^{23} - 4 q^{27} + 15 q^{29} + 6 q^{31} - 3 q^{33} - 11 q^{37} - 3 q^{39} + 13 q^{41} - 14 q^{43} - 11 q^{47} + 19 q^{49} + 2 q^{51} + 11 q^{53} + 8 q^{59} + 13 q^{61} - 3 q^{63} - 15 q^{67} + 5 q^{69} - 9 q^{71} - 7 q^{73} + 45 q^{77} + 21 q^{79} + 4 q^{81} - 7 q^{83} - 15 q^{87} + 12 q^{89} + 17 q^{91} - 6 q^{93} + 5 q^{97} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.97706 1.12522 0.562611 0.826722i \(-0.309797\pi\)
0.562611 + 0.826722i \(0.309797\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 5.59509 1.68698 0.843492 0.537142i \(-0.180496\pi\)
0.843492 + 0.537142i \(0.180496\pi\)
\(12\) 0 0
\(13\) 6.43501 1.78475 0.892376 0.451293i \(-0.149037\pi\)
0.892376 + 0.451293i \(0.149037\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.61803 −0.392431 −0.196215 0.980561i \(-0.562865\pi\)
−0.196215 + 0.980561i \(0.562865\pi\)
\(18\) 0 0
\(19\) −3.07599 −0.705681 −0.352840 0.935684i \(-0.614784\pi\)
−0.352840 + 0.935684i \(0.614784\pi\)
\(20\) 0 0
\(21\) −2.97706 −0.649647
\(22\) 0 0
\(23\) 3.59509 0.749628 0.374814 0.927100i \(-0.377707\pi\)
0.374814 + 0.927100i \(0.377707\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 7.19894 1.33681 0.668405 0.743797i \(-0.266977\pi\)
0.668405 + 0.743797i \(0.266977\pi\)
\(30\) 0 0
\(31\) 5.69402 1.02268 0.511338 0.859379i \(-0.329150\pi\)
0.511338 + 0.859379i \(0.329150\pi\)
\(32\) 0 0
\(33\) −5.59509 −0.973980
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −9.27493 −1.52479 −0.762395 0.647112i \(-0.775977\pi\)
−0.762395 + 0.647112i \(0.775977\pi\)
\(38\) 0 0
\(39\) −6.43501 −1.03043
\(40\) 0 0
\(41\) 11.4492 1.78806 0.894032 0.448004i \(-0.147865\pi\)
0.894032 + 0.448004i \(0.147865\pi\)
\(42\) 0 0
\(43\) −0.145898 −0.0222492 −0.0111246 0.999938i \(-0.503541\pi\)
−0.0111246 + 0.999938i \(0.503541\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −12.9071 −1.88270 −0.941351 0.337430i \(-0.890442\pi\)
−0.941351 + 0.337430i \(0.890442\pi\)
\(48\) 0 0
\(49\) 1.86287 0.266124
\(50\) 0 0
\(51\) 1.61803 0.226570
\(52\) 0 0
\(53\) 0.419089 0.0575663 0.0287832 0.999586i \(-0.490837\pi\)
0.0287832 + 0.999586i \(0.490837\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.07599 0.407425
\(58\) 0 0
\(59\) 5.54379 0.721740 0.360870 0.932616i \(-0.382480\pi\)
0.360870 + 0.932616i \(0.382480\pi\)
\(60\) 0 0
\(61\) −11.8471 −1.51686 −0.758432 0.651753i \(-0.774034\pi\)
−0.758432 + 0.651753i \(0.774034\pi\)
\(62\) 0 0
\(63\) 2.97706 0.375074
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6.91525 −0.844832 −0.422416 0.906402i \(-0.638818\pi\)
−0.422416 + 0.906402i \(0.638818\pi\)
\(68\) 0 0
\(69\) −3.59509 −0.432798
\(70\) 0 0
\(71\) −6.81698 −0.809027 −0.404513 0.914532i \(-0.632559\pi\)
−0.404513 + 0.914532i \(0.632559\pi\)
\(72\) 0 0
\(73\) −3.33500 −0.390332 −0.195166 0.980770i \(-0.562525\pi\)
−0.195166 + 0.980770i \(0.562525\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 16.6569 1.89823
\(78\) 0 0
\(79\) −6.30329 −0.709176 −0.354588 0.935023i \(-0.615379\pi\)
−0.354588 + 0.935023i \(0.615379\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −8.45903 −0.928500 −0.464250 0.885704i \(-0.653676\pi\)
−0.464250 + 0.885704i \(0.653676\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −7.19894 −0.771808
\(88\) 0 0
\(89\) −2.31206 −0.245078 −0.122539 0.992464i \(-0.539104\pi\)
−0.122539 + 0.992464i \(0.539104\pi\)
\(90\) 0 0
\(91\) 19.1574 2.00824
\(92\) 0 0
\(93\) −5.69402 −0.590443
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 9.44919 0.959420 0.479710 0.877427i \(-0.340742\pi\)
0.479710 + 0.877427i \(0.340742\pi\)
\(98\) 0 0
\(99\) 5.59509 0.562328
\(100\) 0 0
\(101\) 16.2273 1.61468 0.807339 0.590089i \(-0.200907\pi\)
0.807339 + 0.590089i \(0.200907\pi\)
\(102\) 0 0
\(103\) −10.2990 −1.01479 −0.507393 0.861715i \(-0.669391\pi\)
−0.507393 + 0.861715i \(0.669391\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.10877 0.107189 0.0535946 0.998563i \(-0.482932\pi\)
0.0535946 + 0.998563i \(0.482932\pi\)
\(108\) 0 0
\(109\) −15.1821 −1.45418 −0.727090 0.686542i \(-0.759128\pi\)
−0.727090 + 0.686542i \(0.759128\pi\)
\(110\) 0 0
\(111\) 9.27493 0.880338
\(112\) 0 0
\(113\) 5.48090 0.515600 0.257800 0.966198i \(-0.417002\pi\)
0.257800 + 0.966198i \(0.417002\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6.43501 0.594917
\(118\) 0 0
\(119\) −4.81698 −0.441572
\(120\) 0 0
\(121\) 20.3050 1.84591
\(122\) 0 0
\(123\) −11.4492 −1.03234
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −3.39615 −0.301359 −0.150680 0.988583i \(-0.548146\pi\)
−0.150680 + 0.988583i \(0.548146\pi\)
\(128\) 0 0
\(129\) 0.145898 0.0128456
\(130\) 0 0
\(131\) 1.05130 0.0918528 0.0459264 0.998945i \(-0.485376\pi\)
0.0459264 + 0.998945i \(0.485376\pi\)
\(132\) 0 0
\(133\) −9.15740 −0.794047
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.11311 0.351407 0.175703 0.984443i \(-0.443780\pi\)
0.175703 + 0.984443i \(0.443780\pi\)
\(138\) 0 0
\(139\) 20.9559 1.77745 0.888726 0.458438i \(-0.151591\pi\)
0.888726 + 0.458438i \(0.151591\pi\)
\(140\) 0 0
\(141\) 12.9071 1.08698
\(142\) 0 0
\(143\) 36.0045 3.01085
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1.86287 −0.153647
\(148\) 0 0
\(149\) 10.8781 0.891171 0.445585 0.895239i \(-0.352996\pi\)
0.445585 + 0.895239i \(0.352996\pi\)
\(150\) 0 0
\(151\) 15.9530 1.29824 0.649120 0.760686i \(-0.275137\pi\)
0.649120 + 0.760686i \(0.275137\pi\)
\(152\) 0 0
\(153\) −1.61803 −0.130810
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 21.8744 1.74576 0.872882 0.487931i \(-0.162248\pi\)
0.872882 + 0.487931i \(0.162248\pi\)
\(158\) 0 0
\(159\) −0.419089 −0.0332359
\(160\) 0 0
\(161\) 10.7028 0.843498
\(162\) 0 0
\(163\) −18.1432 −1.42109 −0.710543 0.703654i \(-0.751551\pi\)
−0.710543 + 0.703654i \(0.751551\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.18910 −0.401545 −0.200772 0.979638i \(-0.564345\pi\)
−0.200772 + 0.979638i \(0.564345\pi\)
\(168\) 0 0
\(169\) 28.4094 2.18534
\(170\) 0 0
\(171\) −3.07599 −0.235227
\(172\) 0 0
\(173\) 18.9771 1.44280 0.721399 0.692519i \(-0.243499\pi\)
0.721399 + 0.692519i \(0.243499\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −5.54379 −0.416697
\(178\) 0 0
\(179\) −11.9744 −0.895007 −0.447503 0.894282i \(-0.647687\pi\)
−0.447503 + 0.894282i \(0.647687\pi\)
\(180\) 0 0
\(181\) 11.5881 0.861334 0.430667 0.902511i \(-0.358278\pi\)
0.430667 + 0.902511i \(0.358278\pi\)
\(182\) 0 0
\(183\) 11.8471 0.875761
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −9.05305 −0.662024
\(188\) 0 0
\(189\) −2.97706 −0.216549
\(190\) 0 0
\(191\) −12.8322 −0.928508 −0.464254 0.885702i \(-0.653678\pi\)
−0.464254 + 0.885702i \(0.653678\pi\)
\(192\) 0 0
\(193\) −9.15024 −0.658648 −0.329324 0.944217i \(-0.606821\pi\)
−0.329324 + 0.944217i \(0.606821\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.45187 0.602171 0.301086 0.953597i \(-0.402651\pi\)
0.301086 + 0.953597i \(0.402651\pi\)
\(198\) 0 0
\(199\) −18.0231 −1.27762 −0.638811 0.769364i \(-0.720574\pi\)
−0.638811 + 0.769364i \(0.720574\pi\)
\(200\) 0 0
\(201\) 6.91525 0.487764
\(202\) 0 0
\(203\) 21.4317 1.50421
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 3.59509 0.249876
\(208\) 0 0
\(209\) −17.2104 −1.19047
\(210\) 0 0
\(211\) 7.11245 0.489641 0.244821 0.969568i \(-0.421271\pi\)
0.244821 + 0.969568i \(0.421271\pi\)
\(212\) 0 0
\(213\) 6.81698 0.467092
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 16.9514 1.15074
\(218\) 0 0
\(219\) 3.33500 0.225359
\(220\) 0 0
\(221\) −10.4121 −0.700392
\(222\) 0 0
\(223\) −24.7383 −1.65660 −0.828300 0.560285i \(-0.810692\pi\)
−0.828300 + 0.560285i \(0.810692\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −20.2581 −1.34458 −0.672288 0.740290i \(-0.734688\pi\)
−0.672288 + 0.740290i \(0.734688\pi\)
\(228\) 0 0
\(229\) 2.20002 0.145382 0.0726908 0.997355i \(-0.476841\pi\)
0.0726908 + 0.997355i \(0.476841\pi\)
\(230\) 0 0
\(231\) −16.6569 −1.09594
\(232\) 0 0
\(233\) 1.55189 0.101667 0.0508337 0.998707i \(-0.483812\pi\)
0.0508337 + 0.998707i \(0.483812\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 6.30329 0.409443
\(238\) 0 0
\(239\) −5.98690 −0.387260 −0.193630 0.981075i \(-0.562026\pi\)
−0.193630 + 0.981075i \(0.562026\pi\)
\(240\) 0 0
\(241\) −17.4368 −1.12320 −0.561600 0.827409i \(-0.689814\pi\)
−0.561600 + 0.827409i \(0.689814\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −19.7940 −1.25946
\(248\) 0 0
\(249\) 8.45903 0.536069
\(250\) 0 0
\(251\) 15.4580 0.975698 0.487849 0.872928i \(-0.337782\pi\)
0.487849 + 0.872928i \(0.337782\pi\)
\(252\) 0 0
\(253\) 20.1149 1.26461
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −9.74881 −0.608114 −0.304057 0.952654i \(-0.598341\pi\)
−0.304057 + 0.952654i \(0.598341\pi\)
\(258\) 0 0
\(259\) −27.6120 −1.71573
\(260\) 0 0
\(261\) 7.19894 0.445603
\(262\) 0 0
\(263\) 7.81590 0.481949 0.240975 0.970531i \(-0.422533\pi\)
0.240975 + 0.970531i \(0.422533\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.31206 0.141496
\(268\) 0 0
\(269\) 14.3640 0.875790 0.437895 0.899026i \(-0.355724\pi\)
0.437895 + 0.899026i \(0.355724\pi\)
\(270\) 0 0
\(271\) −7.68418 −0.466781 −0.233390 0.972383i \(-0.574982\pi\)
−0.233390 + 0.972383i \(0.574982\pi\)
\(272\) 0 0
\(273\) −19.1574 −1.15946
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −4.92307 −0.295799 −0.147899 0.989002i \(-0.547251\pi\)
−0.147899 + 0.989002i \(0.547251\pi\)
\(278\) 0 0
\(279\) 5.69402 0.340892
\(280\) 0 0
\(281\) −15.1371 −0.903006 −0.451503 0.892270i \(-0.649112\pi\)
−0.451503 + 0.892270i \(0.649112\pi\)
\(282\) 0 0
\(283\) 20.8914 1.24186 0.620931 0.783865i \(-0.286755\pi\)
0.620931 + 0.783865i \(0.286755\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 34.0849 2.01197
\(288\) 0 0
\(289\) −14.3820 −0.845998
\(290\) 0 0
\(291\) −9.44919 −0.553921
\(292\) 0 0
\(293\) 13.2820 0.775940 0.387970 0.921672i \(-0.373176\pi\)
0.387970 + 0.921672i \(0.373176\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −5.59509 −0.324660
\(298\) 0 0
\(299\) 23.1345 1.33790
\(300\) 0 0
\(301\) −0.434347 −0.0250353
\(302\) 0 0
\(303\) −16.2273 −0.932234
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −0.650819 −0.0371442 −0.0185721 0.999828i \(-0.505912\pi\)
−0.0185721 + 0.999828i \(0.505912\pi\)
\(308\) 0 0
\(309\) 10.2990 0.585887
\(310\) 0 0
\(311\) 25.6128 1.45237 0.726183 0.687501i \(-0.241292\pi\)
0.726183 + 0.687501i \(0.241292\pi\)
\(312\) 0 0
\(313\) −18.8372 −1.06474 −0.532372 0.846511i \(-0.678699\pi\)
−0.532372 + 0.846511i \(0.678699\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.57649 −0.313207 −0.156603 0.987662i \(-0.550054\pi\)
−0.156603 + 0.987662i \(0.550054\pi\)
\(318\) 0 0
\(319\) 40.2787 2.25518
\(320\) 0 0
\(321\) −1.10877 −0.0618858
\(322\) 0 0
\(323\) 4.97706 0.276931
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 15.1821 0.839571
\(328\) 0 0
\(329\) −38.4253 −2.11846
\(330\) 0 0
\(331\) −13.3088 −0.731518 −0.365759 0.930710i \(-0.619190\pi\)
−0.365759 + 0.930710i \(0.619190\pi\)
\(332\) 0 0
\(333\) −9.27493 −0.508263
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 16.2122 0.883134 0.441567 0.897228i \(-0.354423\pi\)
0.441567 + 0.897228i \(0.354423\pi\)
\(338\) 0 0
\(339\) −5.48090 −0.297682
\(340\) 0 0
\(341\) 31.8586 1.72524
\(342\) 0 0
\(343\) −15.2935 −0.825774
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.18651 0.385792 0.192896 0.981219i \(-0.438212\pi\)
0.192896 + 0.981219i \(0.438212\pi\)
\(348\) 0 0
\(349\) 19.6390 1.05125 0.525625 0.850717i \(-0.323832\pi\)
0.525625 + 0.850717i \(0.323832\pi\)
\(350\) 0 0
\(351\) −6.43501 −0.343476
\(352\) 0 0
\(353\) 10.6099 0.564710 0.282355 0.959310i \(-0.408884\pi\)
0.282355 + 0.959310i \(0.408884\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 4.81698 0.254942
\(358\) 0 0
\(359\) −30.3040 −1.59938 −0.799691 0.600412i \(-0.795003\pi\)
−0.799691 + 0.600412i \(0.795003\pi\)
\(360\) 0 0
\(361\) −9.53828 −0.502015
\(362\) 0 0
\(363\) −20.3050 −1.06574
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1.16549 0.0608383 0.0304191 0.999537i \(-0.490316\pi\)
0.0304191 + 0.999537i \(0.490316\pi\)
\(368\) 0 0
\(369\) 11.4492 0.596021
\(370\) 0 0
\(371\) 1.24765 0.0647749
\(372\) 0 0
\(373\) 2.49400 0.129135 0.0645673 0.997913i \(-0.479433\pi\)
0.0645673 + 0.997913i \(0.479433\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 46.3253 2.38587
\(378\) 0 0
\(379\) 1.83492 0.0942534 0.0471267 0.998889i \(-0.484994\pi\)
0.0471267 + 0.998889i \(0.484994\pi\)
\(380\) 0 0
\(381\) 3.39615 0.173990
\(382\) 0 0
\(383\) −16.0646 −0.820864 −0.410432 0.911891i \(-0.634622\pi\)
−0.410432 + 0.911891i \(0.634622\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.145898 −0.00741641
\(388\) 0 0
\(389\) −25.1203 −1.27365 −0.636824 0.771009i \(-0.719752\pi\)
−0.636824 + 0.771009i \(0.719752\pi\)
\(390\) 0 0
\(391\) −5.81698 −0.294177
\(392\) 0 0
\(393\) −1.05130 −0.0530312
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 17.6798 0.887326 0.443663 0.896194i \(-0.353679\pi\)
0.443663 + 0.896194i \(0.353679\pi\)
\(398\) 0 0
\(399\) 9.15740 0.458443
\(400\) 0 0
\(401\) 2.43219 0.121458 0.0607289 0.998154i \(-0.480657\pi\)
0.0607289 + 0.998154i \(0.480657\pi\)
\(402\) 0 0
\(403\) 36.6411 1.82522
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −51.8941 −2.57230
\(408\) 0 0
\(409\) −20.3509 −1.00629 −0.503144 0.864202i \(-0.667824\pi\)
−0.503144 + 0.864202i \(0.667824\pi\)
\(410\) 0 0
\(411\) −4.11311 −0.202885
\(412\) 0 0
\(413\) 16.5042 0.812117
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −20.9559 −1.02621
\(418\) 0 0
\(419\) 24.0158 1.17325 0.586625 0.809859i \(-0.300456\pi\)
0.586625 + 0.809859i \(0.300456\pi\)
\(420\) 0 0
\(421\) −32.6241 −1.59000 −0.795001 0.606608i \(-0.792530\pi\)
−0.795001 + 0.606608i \(0.792530\pi\)
\(422\) 0 0
\(423\) −12.9071 −0.627567
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −35.2694 −1.70681
\(428\) 0 0
\(429\) −36.0045 −1.73831
\(430\) 0 0
\(431\) −8.72399 −0.420220 −0.210110 0.977678i \(-0.567382\pi\)
−0.210110 + 0.977678i \(0.567382\pi\)
\(432\) 0 0
\(433\) −33.2307 −1.59697 −0.798483 0.602018i \(-0.794364\pi\)
−0.798483 + 0.602018i \(0.794364\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −11.0585 −0.528998
\(438\) 0 0
\(439\) 22.1581 1.05755 0.528773 0.848763i \(-0.322652\pi\)
0.528773 + 0.848763i \(0.322652\pi\)
\(440\) 0 0
\(441\) 1.86287 0.0887079
\(442\) 0 0
\(443\) −2.95085 −0.140199 −0.0700996 0.997540i \(-0.522332\pi\)
−0.0700996 + 0.997540i \(0.522332\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −10.8781 −0.514518
\(448\) 0 0
\(449\) 7.48698 0.353333 0.176666 0.984271i \(-0.443469\pi\)
0.176666 + 0.984271i \(0.443469\pi\)
\(450\) 0 0
\(451\) 64.0593 3.01643
\(452\) 0 0
\(453\) −15.9530 −0.749539
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 28.7258 1.34374 0.671868 0.740671i \(-0.265492\pi\)
0.671868 + 0.740671i \(0.265492\pi\)
\(458\) 0 0
\(459\) 1.61803 0.0755234
\(460\) 0 0
\(461\) −16.0034 −0.745353 −0.372676 0.927961i \(-0.621560\pi\)
−0.372676 + 0.927961i \(0.621560\pi\)
\(462\) 0 0
\(463\) −16.4852 −0.766134 −0.383067 0.923721i \(-0.625132\pi\)
−0.383067 + 0.923721i \(0.625132\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −7.68700 −0.355712 −0.177856 0.984057i \(-0.556916\pi\)
−0.177856 + 0.984057i \(0.556916\pi\)
\(468\) 0 0
\(469\) −20.5871 −0.950623
\(470\) 0 0
\(471\) −21.8744 −1.00792
\(472\) 0 0
\(473\) −0.816313 −0.0375341
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.419089 0.0191888
\(478\) 0 0
\(479\) 16.0318 0.732514 0.366257 0.930514i \(-0.380639\pi\)
0.366257 + 0.930514i \(0.380639\pi\)
\(480\) 0 0
\(481\) −59.6843 −2.72137
\(482\) 0 0
\(483\) −10.7028 −0.486994
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −18.6066 −0.843145 −0.421573 0.906795i \(-0.638522\pi\)
−0.421573 + 0.906795i \(0.638522\pi\)
\(488\) 0 0
\(489\) 18.1432 0.820465
\(490\) 0 0
\(491\) 3.62788 0.163724 0.0818619 0.996644i \(-0.473913\pi\)
0.0818619 + 0.996644i \(0.473913\pi\)
\(492\) 0 0
\(493\) −11.6481 −0.524606
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −20.2945 −0.910334
\(498\) 0 0
\(499\) 9.10435 0.407567 0.203783 0.979016i \(-0.434676\pi\)
0.203783 + 0.979016i \(0.434676\pi\)
\(500\) 0 0
\(501\) 5.18910 0.231832
\(502\) 0 0
\(503\) 1.80714 0.0805763 0.0402881 0.999188i \(-0.487172\pi\)
0.0402881 + 0.999188i \(0.487172\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −28.4094 −1.26171
\(508\) 0 0
\(509\) 25.9576 1.15055 0.575275 0.817960i \(-0.304895\pi\)
0.575275 + 0.817960i \(0.304895\pi\)
\(510\) 0 0
\(511\) −9.92849 −0.439210
\(512\) 0 0
\(513\) 3.07599 0.135808
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −72.2167 −3.17609
\(518\) 0 0
\(519\) −18.9771 −0.833000
\(520\) 0 0
\(521\) −35.4236 −1.55193 −0.775967 0.630773i \(-0.782738\pi\)
−0.775967 + 0.630773i \(0.782738\pi\)
\(522\) 0 0
\(523\) 23.7691 1.03935 0.519675 0.854364i \(-0.326053\pi\)
0.519675 + 0.854364i \(0.326053\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9.21312 −0.401330
\(528\) 0 0
\(529\) −10.0753 −0.438058
\(530\) 0 0
\(531\) 5.54379 0.240580
\(532\) 0 0
\(533\) 73.6757 3.19125
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 11.9744 0.516732
\(538\) 0 0
\(539\) 10.4229 0.448946
\(540\) 0 0
\(541\) 0.931170 0.0400341 0.0200171 0.999800i \(-0.493628\pi\)
0.0200171 + 0.999800i \(0.493628\pi\)
\(542\) 0 0
\(543\) −11.5881 −0.497292
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 28.6968 1.22698 0.613492 0.789701i \(-0.289764\pi\)
0.613492 + 0.789701i \(0.289764\pi\)
\(548\) 0 0
\(549\) −11.8471 −0.505621
\(550\) 0 0
\(551\) −22.1439 −0.943361
\(552\) 0 0
\(553\) −18.7653 −0.797980
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 28.5273 1.20874 0.604371 0.796703i \(-0.293424\pi\)
0.604371 + 0.796703i \(0.293424\pi\)
\(558\) 0 0
\(559\) −0.938856 −0.0397094
\(560\) 0 0
\(561\) 9.05305 0.382220
\(562\) 0 0
\(563\) 35.6411 1.50209 0.751047 0.660249i \(-0.229549\pi\)
0.751047 + 0.660249i \(0.229549\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2.97706 0.125025
\(568\) 0 0
\(569\) 28.8728 1.21041 0.605205 0.796070i \(-0.293091\pi\)
0.605205 + 0.796070i \(0.293091\pi\)
\(570\) 0 0
\(571\) −16.7217 −0.699782 −0.349891 0.936790i \(-0.613781\pi\)
−0.349891 + 0.936790i \(0.613781\pi\)
\(572\) 0 0
\(573\) 12.8322 0.536074
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 11.5022 0.478844 0.239422 0.970916i \(-0.423042\pi\)
0.239422 + 0.970916i \(0.423042\pi\)
\(578\) 0 0
\(579\) 9.15024 0.380271
\(580\) 0 0
\(581\) −25.1830 −1.04477
\(582\) 0 0
\(583\) 2.34484 0.0971135
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −22.5701 −0.931569 −0.465785 0.884898i \(-0.654228\pi\)
−0.465785 + 0.884898i \(0.654228\pi\)
\(588\) 0 0
\(589\) −17.5148 −0.721683
\(590\) 0 0
\(591\) −8.45187 −0.347664
\(592\) 0 0
\(593\) −47.2237 −1.93924 −0.969622 0.244608i \(-0.921341\pi\)
−0.969622 + 0.244608i \(0.921341\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 18.0231 0.737636
\(598\) 0 0
\(599\) −2.79672 −0.114271 −0.0571354 0.998366i \(-0.518197\pi\)
−0.0571354 + 0.998366i \(0.518197\pi\)
\(600\) 0 0
\(601\) −14.2935 −0.583042 −0.291521 0.956564i \(-0.594161\pi\)
−0.291521 + 0.956564i \(0.594161\pi\)
\(602\) 0 0
\(603\) −6.91525 −0.281611
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −12.8876 −0.523090 −0.261545 0.965191i \(-0.584232\pi\)
−0.261545 + 0.965191i \(0.584232\pi\)
\(608\) 0 0
\(609\) −21.4317 −0.868455
\(610\) 0 0
\(611\) −83.0577 −3.36015
\(612\) 0 0
\(613\) 14.1722 0.572411 0.286206 0.958168i \(-0.407606\pi\)
0.286206 + 0.958168i \(0.407606\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10.7558 −0.433014 −0.216507 0.976281i \(-0.569466\pi\)
−0.216507 + 0.976281i \(0.569466\pi\)
\(618\) 0 0
\(619\) −40.2143 −1.61635 −0.808175 0.588942i \(-0.799545\pi\)
−0.808175 + 0.588942i \(0.799545\pi\)
\(620\) 0 0
\(621\) −3.59509 −0.144266
\(622\) 0 0
\(623\) −6.88313 −0.275767
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 17.2104 0.687319
\(628\) 0 0
\(629\) 15.0072 0.598375
\(630\) 0 0
\(631\) −3.16710 −0.126080 −0.0630401 0.998011i \(-0.520080\pi\)
−0.0630401 + 0.998011i \(0.520080\pi\)
\(632\) 0 0
\(633\) −7.11245 −0.282694
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 11.9876 0.474965
\(638\) 0 0
\(639\) −6.81698 −0.269676
\(640\) 0 0
\(641\) −8.93559 −0.352935 −0.176467 0.984306i \(-0.556467\pi\)
−0.176467 + 0.984306i \(0.556467\pi\)
\(642\) 0 0
\(643\) −17.5289 −0.691274 −0.345637 0.938368i \(-0.612337\pi\)
−0.345637 + 0.938368i \(0.612337\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.0600668 −0.00236147 −0.00118073 0.999999i \(-0.500376\pi\)
−0.00118073 + 0.999999i \(0.500376\pi\)
\(648\) 0 0
\(649\) 31.0180 1.21756
\(650\) 0 0
\(651\) −16.9514 −0.664379
\(652\) 0 0
\(653\) 5.63396 0.220474 0.110237 0.993905i \(-0.464839\pi\)
0.110237 + 0.993905i \(0.464839\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −3.33500 −0.130111
\(658\) 0 0
\(659\) −39.1355 −1.52450 −0.762252 0.647280i \(-0.775906\pi\)
−0.762252 + 0.647280i \(0.775906\pi\)
\(660\) 0 0
\(661\) −13.8720 −0.539556 −0.269778 0.962922i \(-0.586950\pi\)
−0.269778 + 0.962922i \(0.586950\pi\)
\(662\) 0 0
\(663\) 10.4121 0.404371
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 25.8809 1.00211
\(668\) 0 0
\(669\) 24.7383 0.956438
\(670\) 0 0
\(671\) −66.2855 −2.55892
\(672\) 0 0
\(673\) 18.5323 0.714369 0.357185 0.934034i \(-0.383737\pi\)
0.357185 + 0.934034i \(0.383737\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 35.6361 1.36961 0.684804 0.728728i \(-0.259888\pi\)
0.684804 + 0.728728i \(0.259888\pi\)
\(678\) 0 0
\(679\) 28.1308 1.07956
\(680\) 0 0
\(681\) 20.2581 0.776291
\(682\) 0 0
\(683\) 30.4749 1.16609 0.583044 0.812440i \(-0.301861\pi\)
0.583044 + 0.812440i \(0.301861\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −2.20002 −0.0839361
\(688\) 0 0
\(689\) 2.69685 0.102742
\(690\) 0 0
\(691\) 16.5208 0.628479 0.314240 0.949344i \(-0.398250\pi\)
0.314240 + 0.949344i \(0.398250\pi\)
\(692\) 0 0
\(693\) 16.6569 0.632743
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −18.5252 −0.701691
\(698\) 0 0
\(699\) −1.55189 −0.0586977
\(700\) 0 0
\(701\) 6.68728 0.252575 0.126287 0.991994i \(-0.459694\pi\)
0.126287 + 0.991994i \(0.459694\pi\)
\(702\) 0 0
\(703\) 28.5296 1.07601
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 48.3096 1.81687
\(708\) 0 0
\(709\) −4.84628 −0.182006 −0.0910029 0.995851i \(-0.529007\pi\)
−0.0910029 + 0.995851i \(0.529007\pi\)
\(710\) 0 0
\(711\) −6.30329 −0.236392
\(712\) 0 0
\(713\) 20.4705 0.766627
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 5.98690 0.223585
\(718\) 0 0
\(719\) 36.6303 1.36608 0.683041 0.730380i \(-0.260657\pi\)
0.683041 + 0.730380i \(0.260657\pi\)
\(720\) 0 0
\(721\) −30.6606 −1.14186
\(722\) 0 0
\(723\) 17.4368 0.648480
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 2.36143 0.0875807 0.0437903 0.999041i \(-0.486057\pi\)
0.0437903 + 0.999041i \(0.486057\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0.236068 0.00873129
\(732\) 0 0
\(733\) −3.19126 −0.117872 −0.0589359 0.998262i \(-0.518771\pi\)
−0.0589359 + 0.998262i \(0.518771\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −38.6914 −1.42522
\(738\) 0 0
\(739\) −53.3412 −1.96219 −0.981094 0.193530i \(-0.938006\pi\)
−0.981094 + 0.193530i \(0.938006\pi\)
\(740\) 0 0
\(741\) 19.7940 0.727152
\(742\) 0 0
\(743\) 37.2497 1.36656 0.683280 0.730157i \(-0.260553\pi\)
0.683280 + 0.730157i \(0.260553\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −8.45903 −0.309500
\(748\) 0 0
\(749\) 3.30089 0.120612
\(750\) 0 0
\(751\) 39.5540 1.44334 0.721672 0.692235i \(-0.243374\pi\)
0.721672 + 0.692235i \(0.243374\pi\)
\(752\) 0 0
\(753\) −15.4580 −0.563319
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −17.0039 −0.618017 −0.309009 0.951059i \(-0.599997\pi\)
−0.309009 + 0.951059i \(0.599997\pi\)
\(758\) 0 0
\(759\) −20.1149 −0.730123
\(760\) 0 0
\(761\) 40.6662 1.47415 0.737075 0.675811i \(-0.236207\pi\)
0.737075 + 0.675811i \(0.236207\pi\)
\(762\) 0 0
\(763\) −45.1979 −1.63627
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 35.6743 1.28813
\(768\) 0 0
\(769\) 4.31197 0.155494 0.0777468 0.996973i \(-0.475227\pi\)
0.0777468 + 0.996973i \(0.475227\pi\)
\(770\) 0 0
\(771\) 9.74881 0.351095
\(772\) 0 0
\(773\) 21.1022 0.758993 0.379497 0.925193i \(-0.376097\pi\)
0.379497 + 0.925193i \(0.376097\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 27.6120 0.990575
\(778\) 0 0
\(779\) −35.2176 −1.26180
\(780\) 0 0
\(781\) −38.1416 −1.36481
\(782\) 0 0
\(783\) −7.19894 −0.257269
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 35.6296 1.27006 0.635029 0.772488i \(-0.280988\pi\)
0.635029 + 0.772488i \(0.280988\pi\)
\(788\) 0 0
\(789\) −7.81590 −0.278253
\(790\) 0 0
\(791\) 16.3169 0.580164
\(792\) 0 0
\(793\) −76.2361 −2.70722
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −35.1353 −1.24455 −0.622277 0.782797i \(-0.713792\pi\)
−0.622277 + 0.782797i \(0.713792\pi\)
\(798\) 0 0
\(799\) 20.8842 0.738830
\(800\) 0 0
\(801\) −2.31206 −0.0816926
\(802\) 0 0
\(803\) −18.6596 −0.658484
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −14.3640 −0.505638
\(808\) 0 0
\(809\) −0.0908359 −0.00319362 −0.00159681 0.999999i \(-0.500508\pi\)
−0.00159681 + 0.999999i \(0.500508\pi\)
\(810\) 0 0
\(811\) −3.09125 −0.108548 −0.0542742 0.998526i \(-0.517285\pi\)
−0.0542742 + 0.998526i \(0.517285\pi\)
\(812\) 0 0
\(813\) 7.68418 0.269496
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0.448781 0.0157009
\(818\) 0 0
\(819\) 19.1574 0.669414
\(820\) 0 0
\(821\) 26.8171 0.935924 0.467962 0.883749i \(-0.344988\pi\)
0.467962 + 0.883749i \(0.344988\pi\)
\(822\) 0 0
\(823\) −8.66133 −0.301915 −0.150957 0.988540i \(-0.548236\pi\)
−0.150957 + 0.988540i \(0.548236\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −54.9171 −1.90966 −0.954828 0.297160i \(-0.903961\pi\)
−0.954828 + 0.297160i \(0.903961\pi\)
\(828\) 0 0
\(829\) 27.2963 0.948039 0.474019 0.880514i \(-0.342803\pi\)
0.474019 + 0.880514i \(0.342803\pi\)
\(830\) 0 0
\(831\) 4.92307 0.170779
\(832\) 0 0
\(833\) −3.01418 −0.104435
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −5.69402 −0.196814
\(838\) 0 0
\(839\) 26.1547 0.902961 0.451481 0.892281i \(-0.350896\pi\)
0.451481 + 0.892281i \(0.350896\pi\)
\(840\) 0 0
\(841\) 22.8248 0.787062
\(842\) 0 0
\(843\) 15.1371 0.521351
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 60.4492 2.07706
\(848\) 0 0
\(849\) −20.8914 −0.716990
\(850\) 0 0
\(851\) −33.3442 −1.14303
\(852\) 0 0
\(853\) −15.7614 −0.539660 −0.269830 0.962908i \(-0.586967\pi\)
−0.269830 + 0.962908i \(0.586967\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −8.76868 −0.299532 −0.149766 0.988721i \(-0.547852\pi\)
−0.149766 + 0.988721i \(0.547852\pi\)
\(858\) 0 0
\(859\) −39.6170 −1.35171 −0.675857 0.737032i \(-0.736227\pi\)
−0.675857 + 0.737032i \(0.736227\pi\)
\(860\) 0 0
\(861\) −34.0849 −1.16161
\(862\) 0 0
\(863\) −15.7727 −0.536911 −0.268455 0.963292i \(-0.586513\pi\)
−0.268455 + 0.963292i \(0.586513\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 14.3820 0.488437
\(868\) 0 0
\(869\) −35.2675 −1.19637
\(870\) 0 0
\(871\) −44.4997 −1.50781
\(872\) 0 0
\(873\) 9.44919 0.319807
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −52.2422 −1.76409 −0.882047 0.471162i \(-0.843835\pi\)
−0.882047 + 0.471162i \(0.843835\pi\)
\(878\) 0 0
\(879\) −13.2820 −0.447989
\(880\) 0 0
\(881\) 13.3902 0.451127 0.225564 0.974228i \(-0.427578\pi\)
0.225564 + 0.974228i \(0.427578\pi\)
\(882\) 0 0
\(883\) −57.4075 −1.93192 −0.965958 0.258698i \(-0.916707\pi\)
−0.965958 + 0.258698i \(0.916707\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 36.0967 1.21201 0.606004 0.795462i \(-0.292772\pi\)
0.606004 + 0.795462i \(0.292772\pi\)
\(888\) 0 0
\(889\) −10.1105 −0.339096
\(890\) 0 0
\(891\) 5.59509 0.187443
\(892\) 0 0
\(893\) 39.7023 1.32859
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −23.1345 −0.772437
\(898\) 0 0
\(899\) 40.9910 1.36713
\(900\) 0 0
\(901\) −0.678101 −0.0225908
\(902\) 0 0
\(903\) 0.434347 0.0144542
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 7.07317 0.234861 0.117430 0.993081i \(-0.462534\pi\)
0.117430 + 0.993081i \(0.462534\pi\)
\(908\) 0 0
\(909\) 16.2273 0.538226
\(910\) 0 0
\(911\) −15.6951 −0.520002 −0.260001 0.965608i \(-0.583723\pi\)
−0.260001 + 0.965608i \(0.583723\pi\)
\(912\) 0 0
\(913\) −47.3291 −1.56636
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.12979 0.103355
\(918\) 0 0
\(919\) 20.4509 0.674614 0.337307 0.941395i \(-0.390484\pi\)
0.337307 + 0.941395i \(0.390484\pi\)
\(920\) 0 0
\(921\) 0.650819 0.0214452
\(922\) 0 0
\(923\) −43.8673 −1.44391
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −10.2990 −0.338262
\(928\) 0 0
\(929\) 20.3367 0.667227 0.333613 0.942710i \(-0.391732\pi\)
0.333613 + 0.942710i \(0.391732\pi\)
\(930\) 0 0
\(931\) −5.73016 −0.187798
\(932\) 0 0
\(933\) −25.6128 −0.838524
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −60.3183 −1.97051 −0.985256 0.171086i \(-0.945273\pi\)
−0.985256 + 0.171086i \(0.945273\pi\)
\(938\) 0 0
\(939\) 18.8372 0.614730
\(940\) 0 0
\(941\) −6.18625 −0.201666 −0.100833 0.994903i \(-0.532151\pi\)
−0.100833 + 0.994903i \(0.532151\pi\)
\(942\) 0 0
\(943\) 41.1609 1.34038
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 32.3809 1.05224 0.526120 0.850411i \(-0.323646\pi\)
0.526120 + 0.850411i \(0.323646\pi\)
\(948\) 0 0
\(949\) −21.4608 −0.696646
\(950\) 0 0
\(951\) 5.57649 0.180830
\(952\) 0 0
\(953\) −38.2037 −1.23754 −0.618770 0.785573i \(-0.712369\pi\)
−0.618770 + 0.785573i \(0.712369\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −40.2787 −1.30203
\(958\) 0 0
\(959\) 12.2450 0.395411
\(960\) 0 0
\(961\) 1.42191 0.0458681
\(962\) 0 0
\(963\) 1.10877 0.0357298
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 31.7778 1.02191 0.510953 0.859609i \(-0.329293\pi\)
0.510953 + 0.859609i \(0.329293\pi\)
\(968\) 0 0
\(969\) −4.97706 −0.159886
\(970\) 0 0
\(971\) 0.870691 0.0279418 0.0139709 0.999902i \(-0.495553\pi\)
0.0139709 + 0.999902i \(0.495553\pi\)
\(972\) 0 0
\(973\) 62.3868 2.00003
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −14.3197 −0.458128 −0.229064 0.973411i \(-0.573567\pi\)
−0.229064 + 0.973411i \(0.573567\pi\)
\(978\) 0 0
\(979\) −12.9362 −0.413442
\(980\) 0 0
\(981\) −15.1821 −0.484727
\(982\) 0 0
\(983\) 12.4302 0.396461 0.198231 0.980155i \(-0.436481\pi\)
0.198231 + 0.980155i \(0.436481\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 38.4253 1.22309
\(988\) 0 0
\(989\) −0.524517 −0.0166787
\(990\) 0 0
\(991\) 27.1963 0.863918 0.431959 0.901893i \(-0.357823\pi\)
0.431959 + 0.901893i \(0.357823\pi\)
\(992\) 0 0
\(993\) 13.3088 0.422342
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 47.1334 1.49273 0.746364 0.665537i \(-0.231798\pi\)
0.746364 + 0.665537i \(0.231798\pi\)
\(998\) 0 0
\(999\) 9.27493 0.293446
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3000.2.a.j.1.4 4
3.2 odd 2 9000.2.a.t.1.4 4
4.3 odd 2 6000.2.a.bl.1.1 4
5.2 odd 4 3000.2.f.h.1249.8 8
5.3 odd 4 3000.2.f.h.1249.1 8
5.4 even 2 3000.2.a.o.1.1 yes 4
15.14 odd 2 9000.2.a.y.1.1 4
20.3 even 4 6000.2.f.p.1249.8 8
20.7 even 4 6000.2.f.p.1249.1 8
20.19 odd 2 6000.2.a.bc.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3000.2.a.j.1.4 4 1.1 even 1 trivial
3000.2.a.o.1.1 yes 4 5.4 even 2
3000.2.f.h.1249.1 8 5.3 odd 4
3000.2.f.h.1249.8 8 5.2 odd 4
6000.2.a.bc.1.4 4 20.19 odd 2
6000.2.a.bl.1.1 4 4.3 odd 2
6000.2.f.p.1249.1 8 20.7 even 4
6000.2.f.p.1249.8 8 20.3 even 4
9000.2.a.t.1.4 4 3.2 odd 2
9000.2.a.y.1.1 4 15.14 odd 2