Properties

Label 2-605-1.1-c1-0-34
Degree $2$
Conductor $605$
Sign $-1$
Analytic cond. $4.83094$
Root an. cond. $2.19794$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73·2-s − 3-s + 0.999·4-s − 5-s − 1.73·6-s − 1.73·7-s − 1.73·8-s − 2·9-s − 1.73·10-s − 0.999·12-s + 3.46·13-s − 2.99·14-s + 15-s − 5·16-s − 6.92·17-s − 3.46·18-s − 3.46·19-s − 0.999·20-s + 1.73·21-s + 1.73·24-s + 25-s + 5.99·26-s + 5·27-s − 1.73·28-s + 1.73·30-s − 8·31-s − 5.19·32-s + ⋯
L(s)  = 1  + 1.22·2-s − 0.577·3-s + 0.499·4-s − 0.447·5-s − 0.707·6-s − 0.654·7-s − 0.612·8-s − 0.666·9-s − 0.547·10-s − 0.288·12-s + 0.960·13-s − 0.801·14-s + 0.258·15-s − 1.25·16-s − 1.68·17-s − 0.816·18-s − 0.794·19-s − 0.223·20-s + 0.377·21-s + 0.353·24-s + 0.200·25-s + 1.17·26-s + 0.962·27-s − 0.327·28-s + 0.316·30-s − 1.43·31-s − 0.918·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(605\)    =    \(5 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(4.83094\)
Root analytic conductor: \(2.19794\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 605,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
11 \( 1 \)
good2 \( 1 - 1.73T + 2T^{2} \)
3 \( 1 + T + 3T^{2} \)
7 \( 1 + 1.73T + 7T^{2} \)
13 \( 1 - 3.46T + 13T^{2} \)
17 \( 1 + 6.92T + 17T^{2} \)
19 \( 1 + 3.46T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 + 8T + 31T^{2} \)
37 \( 1 + 8T + 37T^{2} \)
41 \( 1 - 12.1T + 41T^{2} \)
43 \( 1 - 8.66T + 43T^{2} \)
47 \( 1 - 9T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 + 12T + 59T^{2} \)
61 \( 1 - 8.66T + 61T^{2} \)
67 \( 1 + 5T + 67T^{2} \)
71 \( 1 + 12T + 71T^{2} \)
73 \( 1 + 73T^{2} \)
79 \( 1 + 10.3T + 79T^{2} \)
83 \( 1 - 3.46T + 83T^{2} \)
89 \( 1 - 3T + 89T^{2} \)
97 \( 1 + 10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.81667643402762384082211745565, −9.097081782258434538096454156701, −8.696146579504793606544450782183, −7.12738424913006641520490750420, −6.21582976908259805341697702925, −5.69161695820892943497683929412, −4.48129188551813999289632652079, −3.75162009716497306769710738140, −2.57845760710912345016843008396, 0, 2.57845760710912345016843008396, 3.75162009716497306769710738140, 4.48129188551813999289632652079, 5.69161695820892943497683929412, 6.21582976908259805341697702925, 7.12738424913006641520490750420, 8.696146579504793606544450782183, 9.097081782258434538096454156701, 10.81667643402762384082211745565

Graph of the $Z$-function along the critical line