Properties

Label 605.2.a.e.1.2
Level $605$
Weight $2$
Character 605.1
Self dual yes
Analytic conductor $4.831$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(1,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.83094932229\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 605.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} -1.73205 q^{6} -1.73205 q^{7} -1.73205 q^{8} -2.00000 q^{9} +O(q^{10})\) \(q+1.73205 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} -1.73205 q^{6} -1.73205 q^{7} -1.73205 q^{8} -2.00000 q^{9} -1.73205 q^{10} -1.00000 q^{12} +3.46410 q^{13} -3.00000 q^{14} +1.00000 q^{15} -5.00000 q^{16} -6.92820 q^{17} -3.46410 q^{18} -3.46410 q^{19} -1.00000 q^{20} +1.73205 q^{21} +1.73205 q^{24} +1.00000 q^{25} +6.00000 q^{26} +5.00000 q^{27} -1.73205 q^{28} +1.73205 q^{30} -8.00000 q^{31} -5.19615 q^{32} -12.0000 q^{34} +1.73205 q^{35} -2.00000 q^{36} -8.00000 q^{37} -6.00000 q^{38} -3.46410 q^{39} +1.73205 q^{40} +12.1244 q^{41} +3.00000 q^{42} +8.66025 q^{43} +2.00000 q^{45} +9.00000 q^{47} +5.00000 q^{48} -4.00000 q^{49} +1.73205 q^{50} +6.92820 q^{51} +3.46410 q^{52} +6.00000 q^{53} +8.66025 q^{54} +3.00000 q^{56} +3.46410 q^{57} -12.0000 q^{59} +1.00000 q^{60} +8.66025 q^{61} -13.8564 q^{62} +3.46410 q^{63} +1.00000 q^{64} -3.46410 q^{65} -5.00000 q^{67} -6.92820 q^{68} +3.00000 q^{70} -12.0000 q^{71} +3.46410 q^{72} -13.8564 q^{74} -1.00000 q^{75} -3.46410 q^{76} -6.00000 q^{78} -10.3923 q^{79} +5.00000 q^{80} +1.00000 q^{81} +21.0000 q^{82} +3.46410 q^{83} +1.73205 q^{84} +6.92820 q^{85} +15.0000 q^{86} +3.00000 q^{89} +3.46410 q^{90} -6.00000 q^{91} +8.00000 q^{93} +15.5885 q^{94} +3.46410 q^{95} +5.19615 q^{96} -10.0000 q^{97} -6.92820 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{4} - 2 q^{5} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + 2 q^{4} - 2 q^{5} - 4 q^{9} - 2 q^{12} - 6 q^{14} + 2 q^{15} - 10 q^{16} - 2 q^{20} + 2 q^{25} + 12 q^{26} + 10 q^{27} - 16 q^{31} - 24 q^{34} - 4 q^{36} - 16 q^{37} - 12 q^{38} + 6 q^{42} + 4 q^{45} + 18 q^{47} + 10 q^{48} - 8 q^{49} + 12 q^{53} + 6 q^{56} - 24 q^{59} + 2 q^{60} + 2 q^{64} - 10 q^{67} + 6 q^{70} - 24 q^{71} - 2 q^{75} - 12 q^{78} + 10 q^{80} + 2 q^{81} + 42 q^{82} + 30 q^{86} + 6 q^{89} - 12 q^{91} + 16 q^{93} - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205 1.22474 0.612372 0.790569i \(-0.290215\pi\)
0.612372 + 0.790569i \(0.290215\pi\)
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) −1.73205 −0.707107
\(7\) −1.73205 −0.654654 −0.327327 0.944911i \(-0.606148\pi\)
−0.327327 + 0.944911i \(0.606148\pi\)
\(8\) −1.73205 −0.612372
\(9\) −2.00000 −0.666667
\(10\) −1.73205 −0.547723
\(11\) 0 0
\(12\) −1.00000 −0.288675
\(13\) 3.46410 0.960769 0.480384 0.877058i \(-0.340497\pi\)
0.480384 + 0.877058i \(0.340497\pi\)
\(14\) −3.00000 −0.801784
\(15\) 1.00000 0.258199
\(16\) −5.00000 −1.25000
\(17\) −6.92820 −1.68034 −0.840168 0.542326i \(-0.817544\pi\)
−0.840168 + 0.542326i \(0.817544\pi\)
\(18\) −3.46410 −0.816497
\(19\) −3.46410 −0.794719 −0.397360 0.917663i \(-0.630073\pi\)
−0.397360 + 0.917663i \(0.630073\pi\)
\(20\) −1.00000 −0.223607
\(21\) 1.73205 0.377964
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 1.73205 0.353553
\(25\) 1.00000 0.200000
\(26\) 6.00000 1.17670
\(27\) 5.00000 0.962250
\(28\) −1.73205 −0.327327
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 1.73205 0.316228
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) −5.19615 −0.918559
\(33\) 0 0
\(34\) −12.0000 −2.05798
\(35\) 1.73205 0.292770
\(36\) −2.00000 −0.333333
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) −6.00000 −0.973329
\(39\) −3.46410 −0.554700
\(40\) 1.73205 0.273861
\(41\) 12.1244 1.89351 0.946753 0.321960i \(-0.104342\pi\)
0.946753 + 0.321960i \(0.104342\pi\)
\(42\) 3.00000 0.462910
\(43\) 8.66025 1.32068 0.660338 0.750968i \(-0.270413\pi\)
0.660338 + 0.750968i \(0.270413\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 0 0
\(47\) 9.00000 1.31278 0.656392 0.754420i \(-0.272082\pi\)
0.656392 + 0.754420i \(0.272082\pi\)
\(48\) 5.00000 0.721688
\(49\) −4.00000 −0.571429
\(50\) 1.73205 0.244949
\(51\) 6.92820 0.970143
\(52\) 3.46410 0.480384
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 8.66025 1.17851
\(55\) 0 0
\(56\) 3.00000 0.400892
\(57\) 3.46410 0.458831
\(58\) 0 0
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 1.00000 0.129099
\(61\) 8.66025 1.10883 0.554416 0.832240i \(-0.312942\pi\)
0.554416 + 0.832240i \(0.312942\pi\)
\(62\) −13.8564 −1.75977
\(63\) 3.46410 0.436436
\(64\) 1.00000 0.125000
\(65\) −3.46410 −0.429669
\(66\) 0 0
\(67\) −5.00000 −0.610847 −0.305424 0.952217i \(-0.598798\pi\)
−0.305424 + 0.952217i \(0.598798\pi\)
\(68\) −6.92820 −0.840168
\(69\) 0 0
\(70\) 3.00000 0.358569
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 3.46410 0.408248
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) −13.8564 −1.61077
\(75\) −1.00000 −0.115470
\(76\) −3.46410 −0.397360
\(77\) 0 0
\(78\) −6.00000 −0.679366
\(79\) −10.3923 −1.16923 −0.584613 0.811312i \(-0.698754\pi\)
−0.584613 + 0.811312i \(0.698754\pi\)
\(80\) 5.00000 0.559017
\(81\) 1.00000 0.111111
\(82\) 21.0000 2.31906
\(83\) 3.46410 0.380235 0.190117 0.981761i \(-0.439113\pi\)
0.190117 + 0.981761i \(0.439113\pi\)
\(84\) 1.73205 0.188982
\(85\) 6.92820 0.751469
\(86\) 15.0000 1.61749
\(87\) 0 0
\(88\) 0 0
\(89\) 3.00000 0.317999 0.159000 0.987279i \(-0.449173\pi\)
0.159000 + 0.987279i \(0.449173\pi\)
\(90\) 3.46410 0.365148
\(91\) −6.00000 −0.628971
\(92\) 0 0
\(93\) 8.00000 0.829561
\(94\) 15.5885 1.60783
\(95\) 3.46410 0.355409
\(96\) 5.19615 0.530330
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) −6.92820 −0.699854
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −1.73205 −0.172345 −0.0861727 0.996280i \(-0.527464\pi\)
−0.0861727 + 0.996280i \(0.527464\pi\)
\(102\) 12.0000 1.18818
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) −6.00000 −0.588348
\(105\) −1.73205 −0.169031
\(106\) 10.3923 1.00939
\(107\) 1.73205 0.167444 0.0837218 0.996489i \(-0.473319\pi\)
0.0837218 + 0.996489i \(0.473319\pi\)
\(108\) 5.00000 0.481125
\(109\) 1.73205 0.165900 0.0829502 0.996554i \(-0.473566\pi\)
0.0829502 + 0.996554i \(0.473566\pi\)
\(110\) 0 0
\(111\) 8.00000 0.759326
\(112\) 8.66025 0.818317
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 6.00000 0.561951
\(115\) 0 0
\(116\) 0 0
\(117\) −6.92820 −0.640513
\(118\) −20.7846 −1.91338
\(119\) 12.0000 1.10004
\(120\) −1.73205 −0.158114
\(121\) 0 0
\(122\) 15.0000 1.35804
\(123\) −12.1244 −1.09322
\(124\) −8.00000 −0.718421
\(125\) −1.00000 −0.0894427
\(126\) 6.00000 0.534522
\(127\) 1.73205 0.153695 0.0768473 0.997043i \(-0.475515\pi\)
0.0768473 + 0.997043i \(0.475515\pi\)
\(128\) 12.1244 1.07165
\(129\) −8.66025 −0.762493
\(130\) −6.00000 −0.526235
\(131\) −3.46410 −0.302660 −0.151330 0.988483i \(-0.548356\pi\)
−0.151330 + 0.988483i \(0.548356\pi\)
\(132\) 0 0
\(133\) 6.00000 0.520266
\(134\) −8.66025 −0.748132
\(135\) −5.00000 −0.430331
\(136\) 12.0000 1.02899
\(137\) 18.0000 1.53784 0.768922 0.639343i \(-0.220793\pi\)
0.768922 + 0.639343i \(0.220793\pi\)
\(138\) 0 0
\(139\) 13.8564 1.17529 0.587643 0.809121i \(-0.300056\pi\)
0.587643 + 0.809121i \(0.300056\pi\)
\(140\) 1.73205 0.146385
\(141\) −9.00000 −0.757937
\(142\) −20.7846 −1.74421
\(143\) 0 0
\(144\) 10.0000 0.833333
\(145\) 0 0
\(146\) 0 0
\(147\) 4.00000 0.329914
\(148\) −8.00000 −0.657596
\(149\) −19.0526 −1.56085 −0.780423 0.625252i \(-0.784996\pi\)
−0.780423 + 0.625252i \(0.784996\pi\)
\(150\) −1.73205 −0.141421
\(151\) −20.7846 −1.69143 −0.845714 0.533637i \(-0.820825\pi\)
−0.845714 + 0.533637i \(0.820825\pi\)
\(152\) 6.00000 0.486664
\(153\) 13.8564 1.12022
\(154\) 0 0
\(155\) 8.00000 0.642575
\(156\) −3.46410 −0.277350
\(157\) 4.00000 0.319235 0.159617 0.987179i \(-0.448974\pi\)
0.159617 + 0.987179i \(0.448974\pi\)
\(158\) −18.0000 −1.43200
\(159\) −6.00000 −0.475831
\(160\) 5.19615 0.410792
\(161\) 0 0
\(162\) 1.73205 0.136083
\(163\) −19.0000 −1.48819 −0.744097 0.668071i \(-0.767120\pi\)
−0.744097 + 0.668071i \(0.767120\pi\)
\(164\) 12.1244 0.946753
\(165\) 0 0
\(166\) 6.00000 0.465690
\(167\) −5.19615 −0.402090 −0.201045 0.979582i \(-0.564434\pi\)
−0.201045 + 0.979582i \(0.564434\pi\)
\(168\) −3.00000 −0.231455
\(169\) −1.00000 −0.0769231
\(170\) 12.0000 0.920358
\(171\) 6.92820 0.529813
\(172\) 8.66025 0.660338
\(173\) 10.3923 0.790112 0.395056 0.918657i \(-0.370725\pi\)
0.395056 + 0.918657i \(0.370725\pi\)
\(174\) 0 0
\(175\) −1.73205 −0.130931
\(176\) 0 0
\(177\) 12.0000 0.901975
\(178\) 5.19615 0.389468
\(179\) −18.0000 −1.34538 −0.672692 0.739923i \(-0.734862\pi\)
−0.672692 + 0.739923i \(0.734862\pi\)
\(180\) 2.00000 0.149071
\(181\) 11.0000 0.817624 0.408812 0.912619i \(-0.365943\pi\)
0.408812 + 0.912619i \(0.365943\pi\)
\(182\) −10.3923 −0.770329
\(183\) −8.66025 −0.640184
\(184\) 0 0
\(185\) 8.00000 0.588172
\(186\) 13.8564 1.01600
\(187\) 0 0
\(188\) 9.00000 0.656392
\(189\) −8.66025 −0.629941
\(190\) 6.00000 0.435286
\(191\) −6.00000 −0.434145 −0.217072 0.976156i \(-0.569651\pi\)
−0.217072 + 0.976156i \(0.569651\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −3.46410 −0.249351 −0.124676 0.992198i \(-0.539789\pi\)
−0.124676 + 0.992198i \(0.539789\pi\)
\(194\) −17.3205 −1.24354
\(195\) 3.46410 0.248069
\(196\) −4.00000 −0.285714
\(197\) −10.3923 −0.740421 −0.370211 0.928948i \(-0.620714\pi\)
−0.370211 + 0.928948i \(0.620714\pi\)
\(198\) 0 0
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) −1.73205 −0.122474
\(201\) 5.00000 0.352673
\(202\) −3.00000 −0.211079
\(203\) 0 0
\(204\) 6.92820 0.485071
\(205\) −12.1244 −0.846802
\(206\) −6.92820 −0.482711
\(207\) 0 0
\(208\) −17.3205 −1.20096
\(209\) 0 0
\(210\) −3.00000 −0.207020
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 6.00000 0.412082
\(213\) 12.0000 0.822226
\(214\) 3.00000 0.205076
\(215\) −8.66025 −0.590624
\(216\) −8.66025 −0.589256
\(217\) 13.8564 0.940634
\(218\) 3.00000 0.203186
\(219\) 0 0
\(220\) 0 0
\(221\) −24.0000 −1.61441
\(222\) 13.8564 0.929981
\(223\) −19.0000 −1.27233 −0.636167 0.771551i \(-0.719481\pi\)
−0.636167 + 0.771551i \(0.719481\pi\)
\(224\) 9.00000 0.601338
\(225\) −2.00000 −0.133333
\(226\) −10.3923 −0.691286
\(227\) 19.0526 1.26456 0.632281 0.774739i \(-0.282119\pi\)
0.632281 + 0.774739i \(0.282119\pi\)
\(228\) 3.46410 0.229416
\(229\) 7.00000 0.462573 0.231287 0.972886i \(-0.425707\pi\)
0.231287 + 0.972886i \(0.425707\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.46410 −0.226941 −0.113470 0.993541i \(-0.536197\pi\)
−0.113470 + 0.993541i \(0.536197\pi\)
\(234\) −12.0000 −0.784465
\(235\) −9.00000 −0.587095
\(236\) −12.0000 −0.781133
\(237\) 10.3923 0.675053
\(238\) 20.7846 1.34727
\(239\) 3.46410 0.224074 0.112037 0.993704i \(-0.464262\pi\)
0.112037 + 0.993704i \(0.464262\pi\)
\(240\) −5.00000 −0.322749
\(241\) −19.0526 −1.22728 −0.613642 0.789585i \(-0.710296\pi\)
−0.613642 + 0.789585i \(0.710296\pi\)
\(242\) 0 0
\(243\) −16.0000 −1.02640
\(244\) 8.66025 0.554416
\(245\) 4.00000 0.255551
\(246\) −21.0000 −1.33891
\(247\) −12.0000 −0.763542
\(248\) 13.8564 0.879883
\(249\) −3.46410 −0.219529
\(250\) −1.73205 −0.109545
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 3.46410 0.218218
\(253\) 0 0
\(254\) 3.00000 0.188237
\(255\) −6.92820 −0.433861
\(256\) 19.0000 1.18750
\(257\) 12.0000 0.748539 0.374270 0.927320i \(-0.377893\pi\)
0.374270 + 0.927320i \(0.377893\pi\)
\(258\) −15.0000 −0.933859
\(259\) 13.8564 0.860995
\(260\) −3.46410 −0.214834
\(261\) 0 0
\(262\) −6.00000 −0.370681
\(263\) 24.2487 1.49524 0.747620 0.664127i \(-0.231197\pi\)
0.747620 + 0.664127i \(0.231197\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 10.3923 0.637193
\(267\) −3.00000 −0.183597
\(268\) −5.00000 −0.305424
\(269\) −15.0000 −0.914566 −0.457283 0.889321i \(-0.651177\pi\)
−0.457283 + 0.889321i \(0.651177\pi\)
\(270\) −8.66025 −0.527046
\(271\) −13.8564 −0.841717 −0.420858 0.907126i \(-0.638271\pi\)
−0.420858 + 0.907126i \(0.638271\pi\)
\(272\) 34.6410 2.10042
\(273\) 6.00000 0.363137
\(274\) 31.1769 1.88347
\(275\) 0 0
\(276\) 0 0
\(277\) 10.3923 0.624413 0.312207 0.950014i \(-0.398932\pi\)
0.312207 + 0.950014i \(0.398932\pi\)
\(278\) 24.0000 1.43942
\(279\) 16.0000 0.957895
\(280\) −3.00000 −0.179284
\(281\) −6.92820 −0.413302 −0.206651 0.978415i \(-0.566256\pi\)
−0.206651 + 0.978415i \(0.566256\pi\)
\(282\) −15.5885 −0.928279
\(283\) −5.19615 −0.308879 −0.154440 0.988002i \(-0.549357\pi\)
−0.154440 + 0.988002i \(0.549357\pi\)
\(284\) −12.0000 −0.712069
\(285\) −3.46410 −0.205196
\(286\) 0 0
\(287\) −21.0000 −1.23959
\(288\) 10.3923 0.612372
\(289\) 31.0000 1.82353
\(290\) 0 0
\(291\) 10.0000 0.586210
\(292\) 0 0
\(293\) −6.92820 −0.404750 −0.202375 0.979308i \(-0.564866\pi\)
−0.202375 + 0.979308i \(0.564866\pi\)
\(294\) 6.92820 0.404061
\(295\) 12.0000 0.698667
\(296\) 13.8564 0.805387
\(297\) 0 0
\(298\) −33.0000 −1.91164
\(299\) 0 0
\(300\) −1.00000 −0.0577350
\(301\) −15.0000 −0.864586
\(302\) −36.0000 −2.07157
\(303\) 1.73205 0.0995037
\(304\) 17.3205 0.993399
\(305\) −8.66025 −0.495885
\(306\) 24.0000 1.37199
\(307\) −10.3923 −0.593120 −0.296560 0.955014i \(-0.595840\pi\)
−0.296560 + 0.955014i \(0.595840\pi\)
\(308\) 0 0
\(309\) 4.00000 0.227552
\(310\) 13.8564 0.786991
\(311\) −6.00000 −0.340229 −0.170114 0.985424i \(-0.554414\pi\)
−0.170114 + 0.985424i \(0.554414\pi\)
\(312\) 6.00000 0.339683
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 6.92820 0.390981
\(315\) −3.46410 −0.195180
\(316\) −10.3923 −0.584613
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) −10.3923 −0.582772
\(319\) 0 0
\(320\) −1.00000 −0.0559017
\(321\) −1.73205 −0.0966736
\(322\) 0 0
\(323\) 24.0000 1.33540
\(324\) 1.00000 0.0555556
\(325\) 3.46410 0.192154
\(326\) −32.9090 −1.82266
\(327\) −1.73205 −0.0957826
\(328\) −21.0000 −1.15953
\(329\) −15.5885 −0.859419
\(330\) 0 0
\(331\) −34.0000 −1.86881 −0.934405 0.356214i \(-0.884068\pi\)
−0.934405 + 0.356214i \(0.884068\pi\)
\(332\) 3.46410 0.190117
\(333\) 16.0000 0.876795
\(334\) −9.00000 −0.492458
\(335\) 5.00000 0.273179
\(336\) −8.66025 −0.472456
\(337\) 10.3923 0.566105 0.283052 0.959104i \(-0.408653\pi\)
0.283052 + 0.959104i \(0.408653\pi\)
\(338\) −1.73205 −0.0942111
\(339\) 6.00000 0.325875
\(340\) 6.92820 0.375735
\(341\) 0 0
\(342\) 12.0000 0.648886
\(343\) 19.0526 1.02874
\(344\) −15.0000 −0.808746
\(345\) 0 0
\(346\) 18.0000 0.967686
\(347\) −12.1244 −0.650870 −0.325435 0.945564i \(-0.605511\pi\)
−0.325435 + 0.945564i \(0.605511\pi\)
\(348\) 0 0
\(349\) 34.6410 1.85429 0.927146 0.374701i \(-0.122255\pi\)
0.927146 + 0.374701i \(0.122255\pi\)
\(350\) −3.00000 −0.160357
\(351\) 17.3205 0.924500
\(352\) 0 0
\(353\) 24.0000 1.27739 0.638696 0.769460i \(-0.279474\pi\)
0.638696 + 0.769460i \(0.279474\pi\)
\(354\) 20.7846 1.10469
\(355\) 12.0000 0.636894
\(356\) 3.00000 0.159000
\(357\) −12.0000 −0.635107
\(358\) −31.1769 −1.64775
\(359\) −3.46410 −0.182828 −0.0914141 0.995813i \(-0.529139\pi\)
−0.0914141 + 0.995813i \(0.529139\pi\)
\(360\) −3.46410 −0.182574
\(361\) −7.00000 −0.368421
\(362\) 19.0526 1.00138
\(363\) 0 0
\(364\) −6.00000 −0.314485
\(365\) 0 0
\(366\) −15.0000 −0.784063
\(367\) 17.0000 0.887393 0.443696 0.896177i \(-0.353667\pi\)
0.443696 + 0.896177i \(0.353667\pi\)
\(368\) 0 0
\(369\) −24.2487 −1.26234
\(370\) 13.8564 0.720360
\(371\) −10.3923 −0.539542
\(372\) 8.00000 0.414781
\(373\) −13.8564 −0.717458 −0.358729 0.933442i \(-0.616790\pi\)
−0.358729 + 0.933442i \(0.616790\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) −15.5885 −0.803913
\(377\) 0 0
\(378\) −15.0000 −0.771517
\(379\) −34.0000 −1.74646 −0.873231 0.487306i \(-0.837980\pi\)
−0.873231 + 0.487306i \(0.837980\pi\)
\(380\) 3.46410 0.177705
\(381\) −1.73205 −0.0887357
\(382\) −10.3923 −0.531717
\(383\) 24.0000 1.22634 0.613171 0.789950i \(-0.289894\pi\)
0.613171 + 0.789950i \(0.289894\pi\)
\(384\) −12.1244 −0.618718
\(385\) 0 0
\(386\) −6.00000 −0.305392
\(387\) −17.3205 −0.880451
\(388\) −10.0000 −0.507673
\(389\) 3.00000 0.152106 0.0760530 0.997104i \(-0.475768\pi\)
0.0760530 + 0.997104i \(0.475768\pi\)
\(390\) 6.00000 0.303822
\(391\) 0 0
\(392\) 6.92820 0.349927
\(393\) 3.46410 0.174741
\(394\) −18.0000 −0.906827
\(395\) 10.3923 0.522894
\(396\) 0 0
\(397\) 20.0000 1.00377 0.501886 0.864934i \(-0.332640\pi\)
0.501886 + 0.864934i \(0.332640\pi\)
\(398\) −24.2487 −1.21548
\(399\) −6.00000 −0.300376
\(400\) −5.00000 −0.250000
\(401\) 27.0000 1.34832 0.674158 0.738587i \(-0.264507\pi\)
0.674158 + 0.738587i \(0.264507\pi\)
\(402\) 8.66025 0.431934
\(403\) −27.7128 −1.38047
\(404\) −1.73205 −0.0861727
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 0 0
\(408\) −12.0000 −0.594089
\(409\) 5.19615 0.256933 0.128467 0.991714i \(-0.458994\pi\)
0.128467 + 0.991714i \(0.458994\pi\)
\(410\) −21.0000 −1.03712
\(411\) −18.0000 −0.887875
\(412\) −4.00000 −0.197066
\(413\) 20.7846 1.02274
\(414\) 0 0
\(415\) −3.46410 −0.170046
\(416\) −18.0000 −0.882523
\(417\) −13.8564 −0.678551
\(418\) 0 0
\(419\) 18.0000 0.879358 0.439679 0.898155i \(-0.355092\pi\)
0.439679 + 0.898155i \(0.355092\pi\)
\(420\) −1.73205 −0.0845154
\(421\) −17.0000 −0.828529 −0.414265 0.910156i \(-0.635961\pi\)
−0.414265 + 0.910156i \(0.635961\pi\)
\(422\) 0 0
\(423\) −18.0000 −0.875190
\(424\) −10.3923 −0.504695
\(425\) −6.92820 −0.336067
\(426\) 20.7846 1.00702
\(427\) −15.0000 −0.725901
\(428\) 1.73205 0.0837218
\(429\) 0 0
\(430\) −15.0000 −0.723364
\(431\) 38.1051 1.83546 0.917729 0.397206i \(-0.130020\pi\)
0.917729 + 0.397206i \(0.130020\pi\)
\(432\) −25.0000 −1.20281
\(433\) 32.0000 1.53782 0.768911 0.639356i \(-0.220799\pi\)
0.768911 + 0.639356i \(0.220799\pi\)
\(434\) 24.0000 1.15204
\(435\) 0 0
\(436\) 1.73205 0.0829502
\(437\) 0 0
\(438\) 0 0
\(439\) −27.7128 −1.32266 −0.661330 0.750095i \(-0.730008\pi\)
−0.661330 + 0.750095i \(0.730008\pi\)
\(440\) 0 0
\(441\) 8.00000 0.380952
\(442\) −41.5692 −1.97725
\(443\) −15.0000 −0.712672 −0.356336 0.934358i \(-0.615974\pi\)
−0.356336 + 0.934358i \(0.615974\pi\)
\(444\) 8.00000 0.379663
\(445\) −3.00000 −0.142214
\(446\) −32.9090 −1.55828
\(447\) 19.0526 0.901155
\(448\) −1.73205 −0.0818317
\(449\) −15.0000 −0.707894 −0.353947 0.935266i \(-0.615161\pi\)
−0.353947 + 0.935266i \(0.615161\pi\)
\(450\) −3.46410 −0.163299
\(451\) 0 0
\(452\) −6.00000 −0.282216
\(453\) 20.7846 0.976546
\(454\) 33.0000 1.54877
\(455\) 6.00000 0.281284
\(456\) −6.00000 −0.280976
\(457\) 20.7846 0.972263 0.486132 0.873886i \(-0.338408\pi\)
0.486132 + 0.873886i \(0.338408\pi\)
\(458\) 12.1244 0.566534
\(459\) −34.6410 −1.61690
\(460\) 0 0
\(461\) −12.1244 −0.564688 −0.282344 0.959313i \(-0.591112\pi\)
−0.282344 + 0.959313i \(0.591112\pi\)
\(462\) 0 0
\(463\) 41.0000 1.90543 0.952716 0.303863i \(-0.0982765\pi\)
0.952716 + 0.303863i \(0.0982765\pi\)
\(464\) 0 0
\(465\) −8.00000 −0.370991
\(466\) −6.00000 −0.277945
\(467\) 3.00000 0.138823 0.0694117 0.997588i \(-0.477888\pi\)
0.0694117 + 0.997588i \(0.477888\pi\)
\(468\) −6.92820 −0.320256
\(469\) 8.66025 0.399893
\(470\) −15.5885 −0.719042
\(471\) −4.00000 −0.184310
\(472\) 20.7846 0.956689
\(473\) 0 0
\(474\) 18.0000 0.826767
\(475\) −3.46410 −0.158944
\(476\) 12.0000 0.550019
\(477\) −12.0000 −0.549442
\(478\) 6.00000 0.274434
\(479\) 10.3923 0.474837 0.237418 0.971408i \(-0.423699\pi\)
0.237418 + 0.971408i \(0.423699\pi\)
\(480\) −5.19615 −0.237171
\(481\) −27.7128 −1.26360
\(482\) −33.0000 −1.50311
\(483\) 0 0
\(484\) 0 0
\(485\) 10.0000 0.454077
\(486\) −27.7128 −1.25708
\(487\) −20.0000 −0.906287 −0.453143 0.891438i \(-0.649697\pi\)
−0.453143 + 0.891438i \(0.649697\pi\)
\(488\) −15.0000 −0.679018
\(489\) 19.0000 0.859210
\(490\) 6.92820 0.312984
\(491\) 24.2487 1.09433 0.547165 0.837025i \(-0.315707\pi\)
0.547165 + 0.837025i \(0.315707\pi\)
\(492\) −12.1244 −0.546608
\(493\) 0 0
\(494\) −20.7846 −0.935144
\(495\) 0 0
\(496\) 40.0000 1.79605
\(497\) 20.7846 0.932317
\(498\) −6.00000 −0.268866
\(499\) −38.0000 −1.70111 −0.850557 0.525883i \(-0.823735\pi\)
−0.850557 + 0.525883i \(0.823735\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 5.19615 0.232147
\(502\) 0 0
\(503\) 8.66025 0.386142 0.193071 0.981185i \(-0.438155\pi\)
0.193071 + 0.981185i \(0.438155\pi\)
\(504\) −6.00000 −0.267261
\(505\) 1.73205 0.0770752
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) 1.73205 0.0768473
\(509\) 15.0000 0.664863 0.332432 0.943127i \(-0.392131\pi\)
0.332432 + 0.943127i \(0.392131\pi\)
\(510\) −12.0000 −0.531369
\(511\) 0 0
\(512\) 8.66025 0.382733
\(513\) −17.3205 −0.764719
\(514\) 20.7846 0.916770
\(515\) 4.00000 0.176261
\(516\) −8.66025 −0.381246
\(517\) 0 0
\(518\) 24.0000 1.05450
\(519\) −10.3923 −0.456172
\(520\) 6.00000 0.263117
\(521\) 15.0000 0.657162 0.328581 0.944476i \(-0.393430\pi\)
0.328581 + 0.944476i \(0.393430\pi\)
\(522\) 0 0
\(523\) −17.3205 −0.757373 −0.378686 0.925525i \(-0.623624\pi\)
−0.378686 + 0.925525i \(0.623624\pi\)
\(524\) −3.46410 −0.151330
\(525\) 1.73205 0.0755929
\(526\) 42.0000 1.83129
\(527\) 55.4256 2.41438
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) −10.3923 −0.451413
\(531\) 24.0000 1.04151
\(532\) 6.00000 0.260133
\(533\) 42.0000 1.81922
\(534\) −5.19615 −0.224860
\(535\) −1.73205 −0.0748831
\(536\) 8.66025 0.374066
\(537\) 18.0000 0.776757
\(538\) −25.9808 −1.12011
\(539\) 0 0
\(540\) −5.00000 −0.215166
\(541\) −5.19615 −0.223400 −0.111700 0.993742i \(-0.535630\pi\)
−0.111700 + 0.993742i \(0.535630\pi\)
\(542\) −24.0000 −1.03089
\(543\) −11.0000 −0.472055
\(544\) 36.0000 1.54349
\(545\) −1.73205 −0.0741929
\(546\) 10.3923 0.444750
\(547\) −45.0333 −1.92549 −0.962743 0.270418i \(-0.912838\pi\)
−0.962743 + 0.270418i \(0.912838\pi\)
\(548\) 18.0000 0.768922
\(549\) −17.3205 −0.739221
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 18.0000 0.765438
\(554\) 18.0000 0.764747
\(555\) −8.00000 −0.339581
\(556\) 13.8564 0.587643
\(557\) −6.92820 −0.293557 −0.146779 0.989169i \(-0.546891\pi\)
−0.146779 + 0.989169i \(0.546891\pi\)
\(558\) 27.7128 1.17318
\(559\) 30.0000 1.26886
\(560\) −8.66025 −0.365963
\(561\) 0 0
\(562\) −12.0000 −0.506189
\(563\) −15.5885 −0.656975 −0.328488 0.944508i \(-0.606539\pi\)
−0.328488 + 0.944508i \(0.606539\pi\)
\(564\) −9.00000 −0.378968
\(565\) 6.00000 0.252422
\(566\) −9.00000 −0.378298
\(567\) −1.73205 −0.0727393
\(568\) 20.7846 0.872103
\(569\) −1.73205 −0.0726113 −0.0363057 0.999341i \(-0.511559\pi\)
−0.0363057 + 0.999341i \(0.511559\pi\)
\(570\) −6.00000 −0.251312
\(571\) −3.46410 −0.144968 −0.0724841 0.997370i \(-0.523093\pi\)
−0.0724841 + 0.997370i \(0.523093\pi\)
\(572\) 0 0
\(573\) 6.00000 0.250654
\(574\) −36.3731 −1.51818
\(575\) 0 0
\(576\) −2.00000 −0.0833333
\(577\) −20.0000 −0.832611 −0.416305 0.909225i \(-0.636675\pi\)
−0.416305 + 0.909225i \(0.636675\pi\)
\(578\) 53.6936 2.23336
\(579\) 3.46410 0.143963
\(580\) 0 0
\(581\) −6.00000 −0.248922
\(582\) 17.3205 0.717958
\(583\) 0 0
\(584\) 0 0
\(585\) 6.92820 0.286446
\(586\) −12.0000 −0.495715
\(587\) 21.0000 0.866763 0.433381 0.901211i \(-0.357320\pi\)
0.433381 + 0.901211i \(0.357320\pi\)
\(588\) 4.00000 0.164957
\(589\) 27.7128 1.14189
\(590\) 20.7846 0.855689
\(591\) 10.3923 0.427482
\(592\) 40.0000 1.64399
\(593\) 24.2487 0.995775 0.497888 0.867242i \(-0.334109\pi\)
0.497888 + 0.867242i \(0.334109\pi\)
\(594\) 0 0
\(595\) −12.0000 −0.491952
\(596\) −19.0526 −0.780423
\(597\) 14.0000 0.572982
\(598\) 0 0
\(599\) 30.0000 1.22577 0.612883 0.790173i \(-0.290010\pi\)
0.612883 + 0.790173i \(0.290010\pi\)
\(600\) 1.73205 0.0707107
\(601\) 20.7846 0.847822 0.423911 0.905704i \(-0.360657\pi\)
0.423911 + 0.905704i \(0.360657\pi\)
\(602\) −25.9808 −1.05890
\(603\) 10.0000 0.407231
\(604\) −20.7846 −0.845714
\(605\) 0 0
\(606\) 3.00000 0.121867
\(607\) −3.46410 −0.140604 −0.0703018 0.997526i \(-0.522396\pi\)
−0.0703018 + 0.997526i \(0.522396\pi\)
\(608\) 18.0000 0.729996
\(609\) 0 0
\(610\) −15.0000 −0.607332
\(611\) 31.1769 1.26128
\(612\) 13.8564 0.560112
\(613\) −10.3923 −0.419741 −0.209871 0.977729i \(-0.567304\pi\)
−0.209871 + 0.977729i \(0.567304\pi\)
\(614\) −18.0000 −0.726421
\(615\) 12.1244 0.488901
\(616\) 0 0
\(617\) −36.0000 −1.44931 −0.724653 0.689114i \(-0.758000\pi\)
−0.724653 + 0.689114i \(0.758000\pi\)
\(618\) 6.92820 0.278693
\(619\) 20.0000 0.803868 0.401934 0.915669i \(-0.368338\pi\)
0.401934 + 0.915669i \(0.368338\pi\)
\(620\) 8.00000 0.321288
\(621\) 0 0
\(622\) −10.3923 −0.416693
\(623\) −5.19615 −0.208179
\(624\) 17.3205 0.693375
\(625\) 1.00000 0.0400000
\(626\) 17.3205 0.692267
\(627\) 0 0
\(628\) 4.00000 0.159617
\(629\) 55.4256 2.20996
\(630\) −6.00000 −0.239046
\(631\) 28.0000 1.11466 0.557331 0.830290i \(-0.311825\pi\)
0.557331 + 0.830290i \(0.311825\pi\)
\(632\) 18.0000 0.716002
\(633\) 0 0
\(634\) −10.3923 −0.412731
\(635\) −1.73205 −0.0687343
\(636\) −6.00000 −0.237915
\(637\) −13.8564 −0.549011
\(638\) 0 0
\(639\) 24.0000 0.949425
\(640\) −12.1244 −0.479257
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) −3.00000 −0.118401
\(643\) −31.0000 −1.22252 −0.611260 0.791430i \(-0.709337\pi\)
−0.611260 + 0.791430i \(0.709337\pi\)
\(644\) 0 0
\(645\) 8.66025 0.340997
\(646\) 41.5692 1.63552
\(647\) 33.0000 1.29736 0.648682 0.761060i \(-0.275321\pi\)
0.648682 + 0.761060i \(0.275321\pi\)
\(648\) −1.73205 −0.0680414
\(649\) 0 0
\(650\) 6.00000 0.235339
\(651\) −13.8564 −0.543075
\(652\) −19.0000 −0.744097
\(653\) −30.0000 −1.17399 −0.586995 0.809590i \(-0.699689\pi\)
−0.586995 + 0.809590i \(0.699689\pi\)
\(654\) −3.00000 −0.117309
\(655\) 3.46410 0.135354
\(656\) −60.6218 −2.36688
\(657\) 0 0
\(658\) −27.0000 −1.05257
\(659\) 3.46410 0.134942 0.0674711 0.997721i \(-0.478507\pi\)
0.0674711 + 0.997721i \(0.478507\pi\)
\(660\) 0 0
\(661\) 37.0000 1.43913 0.719567 0.694423i \(-0.244340\pi\)
0.719567 + 0.694423i \(0.244340\pi\)
\(662\) −58.8897 −2.28881
\(663\) 24.0000 0.932083
\(664\) −6.00000 −0.232845
\(665\) −6.00000 −0.232670
\(666\) 27.7128 1.07385
\(667\) 0 0
\(668\) −5.19615 −0.201045
\(669\) 19.0000 0.734582
\(670\) 8.66025 0.334575
\(671\) 0 0
\(672\) −9.00000 −0.347183
\(673\) −20.7846 −0.801188 −0.400594 0.916256i \(-0.631196\pi\)
−0.400594 + 0.916256i \(0.631196\pi\)
\(674\) 18.0000 0.693334
\(675\) 5.00000 0.192450
\(676\) −1.00000 −0.0384615
\(677\) 27.7128 1.06509 0.532545 0.846402i \(-0.321236\pi\)
0.532545 + 0.846402i \(0.321236\pi\)
\(678\) 10.3923 0.399114
\(679\) 17.3205 0.664700
\(680\) −12.0000 −0.460179
\(681\) −19.0526 −0.730096
\(682\) 0 0
\(683\) −21.0000 −0.803543 −0.401771 0.915740i \(-0.631605\pi\)
−0.401771 + 0.915740i \(0.631605\pi\)
\(684\) 6.92820 0.264906
\(685\) −18.0000 −0.687745
\(686\) 33.0000 1.25995
\(687\) −7.00000 −0.267067
\(688\) −43.3013 −1.65085
\(689\) 20.7846 0.791831
\(690\) 0 0
\(691\) −10.0000 −0.380418 −0.190209 0.981744i \(-0.560917\pi\)
−0.190209 + 0.981744i \(0.560917\pi\)
\(692\) 10.3923 0.395056
\(693\) 0 0
\(694\) −21.0000 −0.797149
\(695\) −13.8564 −0.525603
\(696\) 0 0
\(697\) −84.0000 −3.18173
\(698\) 60.0000 2.27103
\(699\) 3.46410 0.131024
\(700\) −1.73205 −0.0654654
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 30.0000 1.13228
\(703\) 27.7128 1.04521
\(704\) 0 0
\(705\) 9.00000 0.338960
\(706\) 41.5692 1.56448
\(707\) 3.00000 0.112827
\(708\) 12.0000 0.450988
\(709\) 25.0000 0.938895 0.469447 0.882960i \(-0.344453\pi\)
0.469447 + 0.882960i \(0.344453\pi\)
\(710\) 20.7846 0.780033
\(711\) 20.7846 0.779484
\(712\) −5.19615 −0.194734
\(713\) 0 0
\(714\) −20.7846 −0.777844
\(715\) 0 0
\(716\) −18.0000 −0.672692
\(717\) −3.46410 −0.129369
\(718\) −6.00000 −0.223918
\(719\) 6.00000 0.223762 0.111881 0.993722i \(-0.464312\pi\)
0.111881 + 0.993722i \(0.464312\pi\)
\(720\) −10.0000 −0.372678
\(721\) 6.92820 0.258020
\(722\) −12.1244 −0.451222
\(723\) 19.0526 0.708572
\(724\) 11.0000 0.408812
\(725\) 0 0
\(726\) 0 0
\(727\) 1.00000 0.0370879 0.0185440 0.999828i \(-0.494097\pi\)
0.0185440 + 0.999828i \(0.494097\pi\)
\(728\) 10.3923 0.385164
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −60.0000 −2.21918
\(732\) −8.66025 −0.320092
\(733\) −20.7846 −0.767697 −0.383849 0.923396i \(-0.625402\pi\)
−0.383849 + 0.923396i \(0.625402\pi\)
\(734\) 29.4449 1.08683
\(735\) −4.00000 −0.147542
\(736\) 0 0
\(737\) 0 0
\(738\) −42.0000 −1.54604
\(739\) 3.46410 0.127429 0.0637145 0.997968i \(-0.479705\pi\)
0.0637145 + 0.997968i \(0.479705\pi\)
\(740\) 8.00000 0.294086
\(741\) 12.0000 0.440831
\(742\) −18.0000 −0.660801
\(743\) 5.19615 0.190628 0.0953142 0.995447i \(-0.469614\pi\)
0.0953142 + 0.995447i \(0.469614\pi\)
\(744\) −13.8564 −0.508001
\(745\) 19.0526 0.698032
\(746\) −24.0000 −0.878702
\(747\) −6.92820 −0.253490
\(748\) 0 0
\(749\) −3.00000 −0.109618
\(750\) 1.73205 0.0632456
\(751\) −14.0000 −0.510867 −0.255434 0.966827i \(-0.582218\pi\)
−0.255434 + 0.966827i \(0.582218\pi\)
\(752\) −45.0000 −1.64098
\(753\) 0 0
\(754\) 0 0
\(755\) 20.7846 0.756429
\(756\) −8.66025 −0.314970
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) −58.8897 −2.13897
\(759\) 0 0
\(760\) −6.00000 −0.217643
\(761\) 34.6410 1.25574 0.627868 0.778320i \(-0.283928\pi\)
0.627868 + 0.778320i \(0.283928\pi\)
\(762\) −3.00000 −0.108679
\(763\) −3.00000 −0.108607
\(764\) −6.00000 −0.217072
\(765\) −13.8564 −0.500979
\(766\) 41.5692 1.50196
\(767\) −41.5692 −1.50098
\(768\) −19.0000 −0.685603
\(769\) 27.7128 0.999350 0.499675 0.866213i \(-0.333453\pi\)
0.499675 + 0.866213i \(0.333453\pi\)
\(770\) 0 0
\(771\) −12.0000 −0.432169
\(772\) −3.46410 −0.124676
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) −30.0000 −1.07833
\(775\) −8.00000 −0.287368
\(776\) 17.3205 0.621770
\(777\) −13.8564 −0.497096
\(778\) 5.19615 0.186291
\(779\) −42.0000 −1.50481
\(780\) 3.46410 0.124035
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 20.0000 0.714286
\(785\) −4.00000 −0.142766
\(786\) 6.00000 0.214013
\(787\) −25.9808 −0.926114 −0.463057 0.886328i \(-0.653248\pi\)
−0.463057 + 0.886328i \(0.653248\pi\)
\(788\) −10.3923 −0.370211
\(789\) −24.2487 −0.863277
\(790\) 18.0000 0.640411
\(791\) 10.3923 0.369508
\(792\) 0 0
\(793\) 30.0000 1.06533
\(794\) 34.6410 1.22936
\(795\) 6.00000 0.212798
\(796\) −14.0000 −0.496217
\(797\) −12.0000 −0.425062 −0.212531 0.977154i \(-0.568171\pi\)
−0.212531 + 0.977154i \(0.568171\pi\)
\(798\) −10.3923 −0.367884
\(799\) −62.3538 −2.20592
\(800\) −5.19615 −0.183712
\(801\) −6.00000 −0.212000
\(802\) 46.7654 1.65134
\(803\) 0 0
\(804\) 5.00000 0.176336
\(805\) 0 0
\(806\) −48.0000 −1.69073
\(807\) 15.0000 0.528025
\(808\) 3.00000 0.105540
\(809\) −48.4974 −1.70508 −0.852539 0.522663i \(-0.824939\pi\)
−0.852539 + 0.522663i \(0.824939\pi\)
\(810\) −1.73205 −0.0608581
\(811\) 6.92820 0.243282 0.121641 0.992574i \(-0.461184\pi\)
0.121641 + 0.992574i \(0.461184\pi\)
\(812\) 0 0
\(813\) 13.8564 0.485965
\(814\) 0 0
\(815\) 19.0000 0.665541
\(816\) −34.6410 −1.21268
\(817\) −30.0000 −1.04957
\(818\) 9.00000 0.314678
\(819\) 12.0000 0.419314
\(820\) −12.1244 −0.423401
\(821\) 29.4449 1.02763 0.513816 0.857900i \(-0.328231\pi\)
0.513816 + 0.857900i \(0.328231\pi\)
\(822\) −31.1769 −1.08742
\(823\) 17.0000 0.592583 0.296291 0.955098i \(-0.404250\pi\)
0.296291 + 0.955098i \(0.404250\pi\)
\(824\) 6.92820 0.241355
\(825\) 0 0
\(826\) 36.0000 1.25260
\(827\) 29.4449 1.02390 0.511949 0.859016i \(-0.328924\pi\)
0.511949 + 0.859016i \(0.328924\pi\)
\(828\) 0 0
\(829\) 29.0000 1.00721 0.503606 0.863934i \(-0.332006\pi\)
0.503606 + 0.863934i \(0.332006\pi\)
\(830\) −6.00000 −0.208263
\(831\) −10.3923 −0.360505
\(832\) 3.46410 0.120096
\(833\) 27.7128 0.960192
\(834\) −24.0000 −0.831052
\(835\) 5.19615 0.179820
\(836\) 0 0
\(837\) −40.0000 −1.38260
\(838\) 31.1769 1.07699
\(839\) −42.0000 −1.45000 −0.725001 0.688748i \(-0.758161\pi\)
−0.725001 + 0.688748i \(0.758161\pi\)
\(840\) 3.00000 0.103510
\(841\) −29.0000 −1.00000
\(842\) −29.4449 −1.01474
\(843\) 6.92820 0.238620
\(844\) 0 0
\(845\) 1.00000 0.0344010
\(846\) −31.1769 −1.07188
\(847\) 0 0
\(848\) −30.0000 −1.03020
\(849\) 5.19615 0.178331
\(850\) −12.0000 −0.411597
\(851\) 0 0
\(852\) 12.0000 0.411113
\(853\) −34.6410 −1.18609 −0.593043 0.805171i \(-0.702074\pi\)
−0.593043 + 0.805171i \(0.702074\pi\)
\(854\) −25.9808 −0.889043
\(855\) −6.92820 −0.236940
\(856\) −3.00000 −0.102538
\(857\) −10.3923 −0.354994 −0.177497 0.984121i \(-0.556800\pi\)
−0.177497 + 0.984121i \(0.556800\pi\)
\(858\) 0 0
\(859\) 14.0000 0.477674 0.238837 0.971060i \(-0.423234\pi\)
0.238837 + 0.971060i \(0.423234\pi\)
\(860\) −8.66025 −0.295312
\(861\) 21.0000 0.715678
\(862\) 66.0000 2.24797
\(863\) 21.0000 0.714848 0.357424 0.933942i \(-0.383655\pi\)
0.357424 + 0.933942i \(0.383655\pi\)
\(864\) −25.9808 −0.883883
\(865\) −10.3923 −0.353349
\(866\) 55.4256 1.88344
\(867\) −31.0000 −1.05282
\(868\) 13.8564 0.470317
\(869\) 0 0
\(870\) 0 0
\(871\) −17.3205 −0.586883
\(872\) −3.00000 −0.101593
\(873\) 20.0000 0.676897
\(874\) 0 0
\(875\) 1.73205 0.0585540
\(876\) 0 0
\(877\) −27.7128 −0.935795 −0.467898 0.883783i \(-0.654988\pi\)
−0.467898 + 0.883783i \(0.654988\pi\)
\(878\) −48.0000 −1.61992
\(879\) 6.92820 0.233682
\(880\) 0 0
\(881\) −21.0000 −0.707508 −0.353754 0.935339i \(-0.615095\pi\)
−0.353754 + 0.935339i \(0.615095\pi\)
\(882\) 13.8564 0.466569
\(883\) −56.0000 −1.88455 −0.942275 0.334840i \(-0.891318\pi\)
−0.942275 + 0.334840i \(0.891318\pi\)
\(884\) −24.0000 −0.807207
\(885\) −12.0000 −0.403376
\(886\) −25.9808 −0.872841
\(887\) −32.9090 −1.10497 −0.552487 0.833521i \(-0.686321\pi\)
−0.552487 + 0.833521i \(0.686321\pi\)
\(888\) −13.8564 −0.464991
\(889\) −3.00000 −0.100617
\(890\) −5.19615 −0.174175
\(891\) 0 0
\(892\) −19.0000 −0.636167
\(893\) −31.1769 −1.04330
\(894\) 33.0000 1.10369
\(895\) 18.0000 0.601674
\(896\) −21.0000 −0.701561
\(897\) 0 0
\(898\) −25.9808 −0.866989
\(899\) 0 0
\(900\) −2.00000 −0.0666667
\(901\) −41.5692 −1.38487
\(902\) 0 0
\(903\) 15.0000 0.499169
\(904\) 10.3923 0.345643
\(905\) −11.0000 −0.365652
\(906\) 36.0000 1.19602
\(907\) 17.0000 0.564476 0.282238 0.959344i \(-0.408923\pi\)
0.282238 + 0.959344i \(0.408923\pi\)
\(908\) 19.0526 0.632281
\(909\) 3.46410 0.114897
\(910\) 10.3923 0.344502
\(911\) 6.00000 0.198789 0.0993944 0.995048i \(-0.468309\pi\)
0.0993944 + 0.995048i \(0.468309\pi\)
\(912\) −17.3205 −0.573539
\(913\) 0 0
\(914\) 36.0000 1.19077
\(915\) 8.66025 0.286299
\(916\) 7.00000 0.231287
\(917\) 6.00000 0.198137
\(918\) −60.0000 −1.98030
\(919\) 38.1051 1.25697 0.628486 0.777821i \(-0.283675\pi\)
0.628486 + 0.777821i \(0.283675\pi\)
\(920\) 0 0
\(921\) 10.3923 0.342438
\(922\) −21.0000 −0.691598
\(923\) −41.5692 −1.36827
\(924\) 0 0
\(925\) −8.00000 −0.263038
\(926\) 71.0141 2.33367
\(927\) 8.00000 0.262754
\(928\) 0 0
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) −13.8564 −0.454369
\(931\) 13.8564 0.454125
\(932\) −3.46410 −0.113470
\(933\) 6.00000 0.196431
\(934\) 5.19615 0.170023
\(935\) 0 0
\(936\) 12.0000 0.392232
\(937\) −24.2487 −0.792171 −0.396085 0.918214i \(-0.629632\pi\)
−0.396085 + 0.918214i \(0.629632\pi\)
\(938\) 15.0000 0.489767
\(939\) −10.0000 −0.326338
\(940\) −9.00000 −0.293548
\(941\) −50.2295 −1.63743 −0.818717 0.574197i \(-0.805314\pi\)
−0.818717 + 0.574197i \(0.805314\pi\)
\(942\) −6.92820 −0.225733
\(943\) 0 0
\(944\) 60.0000 1.95283
\(945\) 8.66025 0.281718
\(946\) 0 0
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) 10.3923 0.337526
\(949\) 0 0
\(950\) −6.00000 −0.194666
\(951\) 6.00000 0.194563
\(952\) −20.7846 −0.673633
\(953\) 55.4256 1.79541 0.897706 0.440595i \(-0.145232\pi\)
0.897706 + 0.440595i \(0.145232\pi\)
\(954\) −20.7846 −0.672927
\(955\) 6.00000 0.194155
\(956\) 3.46410 0.112037
\(957\) 0 0
\(958\) 18.0000 0.581554
\(959\) −31.1769 −1.00676
\(960\) 1.00000 0.0322749
\(961\) 33.0000 1.06452
\(962\) −48.0000 −1.54758
\(963\) −3.46410 −0.111629
\(964\) −19.0526 −0.613642
\(965\) 3.46410 0.111513
\(966\) 0 0
\(967\) 38.1051 1.22538 0.612689 0.790324i \(-0.290088\pi\)
0.612689 + 0.790324i \(0.290088\pi\)
\(968\) 0 0
\(969\) −24.0000 −0.770991
\(970\) 17.3205 0.556128
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) −16.0000 −0.513200
\(973\) −24.0000 −0.769405
\(974\) −34.6410 −1.10997
\(975\) −3.46410 −0.110940
\(976\) −43.3013 −1.38604
\(977\) −24.0000 −0.767828 −0.383914 0.923369i \(-0.625424\pi\)
−0.383914 + 0.923369i \(0.625424\pi\)
\(978\) 32.9090 1.05231
\(979\) 0 0
\(980\) 4.00000 0.127775
\(981\) −3.46410 −0.110600
\(982\) 42.0000 1.34027
\(983\) −3.00000 −0.0956851 −0.0478426 0.998855i \(-0.515235\pi\)
−0.0478426 + 0.998855i \(0.515235\pi\)
\(984\) 21.0000 0.669456
\(985\) 10.3923 0.331126
\(986\) 0 0
\(987\) 15.5885 0.496186
\(988\) −12.0000 −0.381771
\(989\) 0 0
\(990\) 0 0
\(991\) −2.00000 −0.0635321 −0.0317660 0.999495i \(-0.510113\pi\)
−0.0317660 + 0.999495i \(0.510113\pi\)
\(992\) 41.5692 1.31982
\(993\) 34.0000 1.07896
\(994\) 36.0000 1.14185
\(995\) 14.0000 0.443830
\(996\) −3.46410 −0.109764
\(997\) −45.0333 −1.42622 −0.713110 0.701052i \(-0.752714\pi\)
−0.713110 + 0.701052i \(0.752714\pi\)
\(998\) −65.8179 −2.08343
\(999\) −40.0000 −1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.a.e.1.2 yes 2
3.2 odd 2 5445.2.a.u.1.1 2
4.3 odd 2 9680.2.a.bu.1.2 2
5.4 even 2 3025.2.a.l.1.1 2
11.2 odd 10 605.2.g.i.81.2 8
11.3 even 5 605.2.g.i.251.2 8
11.4 even 5 605.2.g.i.511.2 8
11.5 even 5 605.2.g.i.366.1 8
11.6 odd 10 605.2.g.i.366.2 8
11.7 odd 10 605.2.g.i.511.1 8
11.8 odd 10 605.2.g.i.251.1 8
11.9 even 5 605.2.g.i.81.1 8
11.10 odd 2 inner 605.2.a.e.1.1 2
33.32 even 2 5445.2.a.u.1.2 2
44.43 even 2 9680.2.a.bu.1.1 2
55.54 odd 2 3025.2.a.l.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
605.2.a.e.1.1 2 11.10 odd 2 inner
605.2.a.e.1.2 yes 2 1.1 even 1 trivial
605.2.g.i.81.1 8 11.9 even 5
605.2.g.i.81.2 8 11.2 odd 10
605.2.g.i.251.1 8 11.8 odd 10
605.2.g.i.251.2 8 11.3 even 5
605.2.g.i.366.1 8 11.5 even 5
605.2.g.i.366.2 8 11.6 odd 10
605.2.g.i.511.1 8 11.7 odd 10
605.2.g.i.511.2 8 11.4 even 5
3025.2.a.l.1.1 2 5.4 even 2
3025.2.a.l.1.2 2 55.54 odd 2
5445.2.a.u.1.1 2 3.2 odd 2
5445.2.a.u.1.2 2 33.32 even 2
9680.2.a.bu.1.1 2 44.43 even 2
9680.2.a.bu.1.2 2 4.3 odd 2