Properties

Label 605.2.g.i.81.1
Level $605$
Weight $2$
Character 605.81
Analytic conductor $4.831$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(81,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.g (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.324000000.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 9x^{4} + 27x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 81.1
Root \(0.535233 - 1.64728i\) of defining polynomial
Character \(\chi\) \(=\) 605.81
Dual form 605.2.g.i.366.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40126 - 1.01807i) q^{2} +(-0.309017 + 0.951057i) q^{3} +(0.309017 + 0.951057i) q^{4} +(0.809017 - 0.587785i) q^{5} +(1.40126 - 1.01807i) q^{6} +(-0.535233 - 1.64728i) q^{7} +(-0.535233 + 1.64728i) q^{8} +(1.61803 + 1.17557i) q^{9} +O(q^{10})\) \(q+(-1.40126 - 1.01807i) q^{2} +(-0.309017 + 0.951057i) q^{3} +(0.309017 + 0.951057i) q^{4} +(0.809017 - 0.587785i) q^{5} +(1.40126 - 1.01807i) q^{6} +(-0.535233 - 1.64728i) q^{7} +(-0.535233 + 1.64728i) q^{8} +(1.61803 + 1.17557i) q^{9} -1.73205 q^{10} -1.00000 q^{12} +(-2.80252 - 2.03615i) q^{13} +(-0.927051 + 2.85317i) q^{14} +(0.309017 + 0.951057i) q^{15} +(4.04508 - 2.93893i) q^{16} +(5.60503 - 4.07230i) q^{17} +(-1.07047 - 3.29456i) q^{18} +(-1.07047 + 3.29456i) q^{19} +(0.809017 + 0.587785i) q^{20} +1.73205 q^{21} +(-1.40126 - 1.01807i) q^{24} +(0.309017 - 0.951057i) q^{25} +(1.85410 + 5.70634i) q^{26} +(-4.04508 + 2.93893i) q^{27} +(1.40126 - 1.01807i) q^{28} +(0.535233 - 1.64728i) q^{30} +(6.47214 + 4.70228i) q^{31} -5.19615 q^{32} -12.0000 q^{34} +(-1.40126 - 1.01807i) q^{35} +(-0.618034 + 1.90211i) q^{36} +(-2.47214 - 7.60845i) q^{37} +(4.85410 - 3.52671i) q^{38} +(2.80252 - 2.03615i) q^{39} +(0.535233 + 1.64728i) q^{40} +(3.74663 - 11.5309i) q^{41} +(-2.42705 - 1.76336i) q^{42} +8.66025 q^{43} +2.00000 q^{45} +(2.78115 - 8.55951i) q^{47} +(1.54508 + 4.75528i) q^{48} +(3.23607 - 2.35114i) q^{49} +(-1.40126 + 1.01807i) q^{50} +(2.14093 + 6.58911i) q^{51} +(1.07047 - 3.29456i) q^{52} +(-4.85410 - 3.52671i) q^{53} +8.66025 q^{54} +3.00000 q^{56} +(-2.80252 - 2.03615i) q^{57} +(-3.70820 - 11.4127i) q^{59} +(-0.809017 + 0.587785i) q^{60} +(-7.00629 + 5.09037i) q^{61} +(-4.28187 - 13.1782i) q^{62} +(1.07047 - 3.29456i) q^{63} +(-0.809017 - 0.587785i) q^{64} -3.46410 q^{65} -5.00000 q^{67} +(5.60503 + 4.07230i) q^{68} +(0.927051 + 2.85317i) q^{70} +(9.70820 - 7.05342i) q^{71} +(-2.80252 + 2.03615i) q^{72} +(-4.28187 + 13.1782i) q^{74} +(0.809017 + 0.587785i) q^{75} -3.46410 q^{76} -6.00000 q^{78} +(8.40755 + 6.10844i) q^{79} +(1.54508 - 4.75528i) q^{80} +(0.309017 + 0.951057i) q^{81} +(-16.9894 + 12.3435i) q^{82} +(-2.80252 + 2.03615i) q^{83} +(0.535233 + 1.64728i) q^{84} +(2.14093 - 6.58911i) q^{85} +(-12.1353 - 8.81678i) q^{86} +3.00000 q^{89} +(-2.80252 - 2.03615i) q^{90} +(-1.85410 + 5.70634i) q^{91} +(-6.47214 + 4.70228i) q^{93} +(-12.6113 + 9.16267i) q^{94} +(1.07047 + 3.29456i) q^{95} +(1.60570 - 4.94183i) q^{96} +(8.09017 + 5.87785i) q^{97} -6.92820 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{3} - 2 q^{4} + 2 q^{5} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 2 q^{3} - 2 q^{4} + 2 q^{5} + 4 q^{9} - 8 q^{12} + 6 q^{14} - 2 q^{15} + 10 q^{16} + 2 q^{20} - 2 q^{25} - 12 q^{26} - 10 q^{27} + 16 q^{31} - 96 q^{34} + 4 q^{36} + 16 q^{37} + 12 q^{38} - 6 q^{42} + 16 q^{45} - 18 q^{47} - 10 q^{48} + 8 q^{49} - 12 q^{53} + 24 q^{56} + 24 q^{59} - 2 q^{60} - 2 q^{64} - 40 q^{67} - 6 q^{70} + 24 q^{71} + 2 q^{75} - 48 q^{78} - 10 q^{80} - 2 q^{81} - 42 q^{82} - 30 q^{86} + 24 q^{89} + 12 q^{91} - 16 q^{93} + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40126 1.01807i −0.990839 0.719887i −0.0307347 0.999528i \(-0.509785\pi\)
−0.960105 + 0.279641i \(0.909785\pi\)
\(3\) −0.309017 + 0.951057i −0.178411 + 0.549093i −0.999773 0.0213149i \(-0.993215\pi\)
0.821362 + 0.570408i \(0.193215\pi\)
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) 0.809017 0.587785i 0.361803 0.262866i
\(6\) 1.40126 1.01807i 0.572061 0.415627i
\(7\) −0.535233 1.64728i −0.202299 0.622613i −0.999813 0.0193127i \(-0.993852\pi\)
0.797514 0.603300i \(-0.206148\pi\)
\(8\) −0.535233 + 1.64728i −0.189233 + 0.582401i
\(9\) 1.61803 + 1.17557i 0.539345 + 0.391857i
\(10\) −1.73205 −0.547723
\(11\) 0 0
\(12\) −1.00000 −0.288675
\(13\) −2.80252 2.03615i −0.777278 0.564726i 0.126883 0.991918i \(-0.459503\pi\)
−0.904161 + 0.427192i \(0.859503\pi\)
\(14\) −0.927051 + 2.85317i −0.247765 + 0.762542i
\(15\) 0.309017 + 0.951057i 0.0797878 + 0.245562i
\(16\) 4.04508 2.93893i 1.01127 0.734732i
\(17\) 5.60503 4.07230i 1.35942 0.987677i 0.360939 0.932589i \(-0.382456\pi\)
0.998482 0.0550873i \(-0.0175437\pi\)
\(18\) −1.07047 3.29456i −0.252311 0.776534i
\(19\) −1.07047 + 3.29456i −0.245582 + 0.755823i 0.749958 + 0.661485i \(0.230073\pi\)
−0.995540 + 0.0943381i \(0.969927\pi\)
\(20\) 0.809017 + 0.587785i 0.180902 + 0.131433i
\(21\) 1.73205 0.377964
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) −1.40126 1.01807i −0.286031 0.207813i
\(25\) 0.309017 0.951057i 0.0618034 0.190211i
\(26\) 1.85410 + 5.70634i 0.363619 + 1.11911i
\(27\) −4.04508 + 2.93893i −0.778477 + 0.565597i
\(28\) 1.40126 1.01807i 0.264813 0.192398i
\(29\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(30\) 0.535233 1.64728i 0.0977198 0.300750i
\(31\) 6.47214 + 4.70228i 1.16243 + 0.844555i 0.990083 0.140482i \(-0.0448651\pi\)
0.172347 + 0.985036i \(0.444865\pi\)
\(32\) −5.19615 −0.918559
\(33\) 0 0
\(34\) −12.0000 −2.05798
\(35\) −1.40126 1.01807i −0.236856 0.172086i
\(36\) −0.618034 + 1.90211i −0.103006 + 0.317019i
\(37\) −2.47214 7.60845i −0.406417 1.25082i −0.919707 0.392607i \(-0.871573\pi\)
0.513290 0.858215i \(-0.328427\pi\)
\(38\) 4.85410 3.52671i 0.787439 0.572108i
\(39\) 2.80252 2.03615i 0.448762 0.326045i
\(40\) 0.535233 + 1.64728i 0.0846278 + 0.260458i
\(41\) 3.74663 11.5309i 0.585126 1.80083i −0.0136398 0.999907i \(-0.504342\pi\)
0.598765 0.800924i \(-0.295658\pi\)
\(42\) −2.42705 1.76336i −0.374502 0.272092i
\(43\) 8.66025 1.32068 0.660338 0.750968i \(-0.270413\pi\)
0.660338 + 0.750968i \(0.270413\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 0 0
\(47\) 2.78115 8.55951i 0.405673 1.24853i −0.514659 0.857395i \(-0.672082\pi\)
0.920332 0.391138i \(-0.127918\pi\)
\(48\) 1.54508 + 4.75528i 0.223014 + 0.686366i
\(49\) 3.23607 2.35114i 0.462295 0.335877i
\(50\) −1.40126 + 1.01807i −0.198168 + 0.143977i
\(51\) 2.14093 + 6.58911i 0.299791 + 0.922660i
\(52\) 1.07047 3.29456i 0.148447 0.456873i
\(53\) −4.85410 3.52671i −0.666762 0.484431i 0.202178 0.979349i \(-0.435198\pi\)
−0.868940 + 0.494918i \(0.835198\pi\)
\(54\) 8.66025 1.17851
\(55\) 0 0
\(56\) 3.00000 0.400892
\(57\) −2.80252 2.03615i −0.371202 0.269694i
\(58\) 0 0
\(59\) −3.70820 11.4127i −0.482767 1.48580i −0.835189 0.549963i \(-0.814642\pi\)
0.352422 0.935841i \(-0.385358\pi\)
\(60\) −0.809017 + 0.587785i −0.104444 + 0.0758827i
\(61\) −7.00629 + 5.09037i −0.897064 + 0.651755i −0.937710 0.347419i \(-0.887058\pi\)
0.0406463 + 0.999174i \(0.487058\pi\)
\(62\) −4.28187 13.1782i −0.543797 1.67364i
\(63\) 1.07047 3.29456i 0.134866 0.415075i
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) −3.46410 −0.429669
\(66\) 0 0
\(67\) −5.00000 −0.610847 −0.305424 0.952217i \(-0.598798\pi\)
−0.305424 + 0.952217i \(0.598798\pi\)
\(68\) 5.60503 + 4.07230i 0.679710 + 0.493838i
\(69\) 0 0
\(70\) 0.927051 + 2.85317i 0.110804 + 0.341019i
\(71\) 9.70820 7.05342i 1.15215 0.837087i 0.163386 0.986562i \(-0.447758\pi\)
0.988766 + 0.149475i \(0.0477583\pi\)
\(72\) −2.80252 + 2.03615i −0.330280 + 0.239962i
\(73\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(74\) −4.28187 + 13.1782i −0.497757 + 1.53194i
\(75\) 0.809017 + 0.587785i 0.0934172 + 0.0678716i
\(76\) −3.46410 −0.397360
\(77\) 0 0
\(78\) −6.00000 −0.679366
\(79\) 8.40755 + 6.10844i 0.945923 + 0.687254i 0.949839 0.312739i \(-0.101246\pi\)
−0.00391577 + 0.999992i \(0.501246\pi\)
\(80\) 1.54508 4.75528i 0.172746 0.531657i
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) −16.9894 + 12.3435i −1.87616 + 1.36311i
\(83\) −2.80252 + 2.03615i −0.307616 + 0.223496i −0.730873 0.682514i \(-0.760887\pi\)
0.423257 + 0.906010i \(0.360887\pi\)
\(84\) 0.535233 + 1.64728i 0.0583987 + 0.179733i
\(85\) 2.14093 6.58911i 0.232217 0.714690i
\(86\) −12.1353 8.81678i −1.30858 0.950738i
\(87\) 0 0
\(88\) 0 0
\(89\) 3.00000 0.317999 0.159000 0.987279i \(-0.449173\pi\)
0.159000 + 0.987279i \(0.449173\pi\)
\(90\) −2.80252 2.03615i −0.295411 0.214629i
\(91\) −1.85410 + 5.70634i −0.194363 + 0.598187i
\(92\) 0 0
\(93\) −6.47214 + 4.70228i −0.671129 + 0.487604i
\(94\) −12.6113 + 9.16267i −1.30076 + 0.945057i
\(95\) 1.07047 + 3.29456i 0.109828 + 0.338014i
\(96\) 1.60570 4.94183i 0.163881 0.504374i
\(97\) 8.09017 + 5.87785i 0.821432 + 0.596806i 0.917122 0.398606i \(-0.130506\pi\)
−0.0956901 + 0.995411i \(0.530506\pi\)
\(98\) −6.92820 −0.699854
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 1.40126 + 1.01807i 0.139430 + 0.101302i 0.655314 0.755357i \(-0.272536\pi\)
−0.515884 + 0.856659i \(0.672536\pi\)
\(102\) 3.70820 11.4127i 0.367167 1.13002i
\(103\) −1.23607 3.80423i −0.121793 0.374842i 0.871510 0.490378i \(-0.163141\pi\)
−0.993303 + 0.115536i \(0.963141\pi\)
\(104\) 4.85410 3.52671i 0.475984 0.345823i
\(105\) 1.40126 1.01807i 0.136749 0.0993538i
\(106\) 3.21140 + 9.88367i 0.311919 + 0.959987i
\(107\) 0.535233 1.64728i 0.0517429 0.159248i −0.921846 0.387556i \(-0.873319\pi\)
0.973589 + 0.228308i \(0.0733193\pi\)
\(108\) −4.04508 2.93893i −0.389238 0.282798i
\(109\) 1.73205 0.165900 0.0829502 0.996554i \(-0.473566\pi\)
0.0829502 + 0.996554i \(0.473566\pi\)
\(110\) 0 0
\(111\) 8.00000 0.759326
\(112\) −7.00629 5.09037i −0.662032 0.480995i
\(113\) −1.85410 + 5.70634i −0.174419 + 0.536807i −0.999606 0.0280521i \(-0.991070\pi\)
0.825187 + 0.564859i \(0.191070\pi\)
\(114\) 1.85410 + 5.70634i 0.173653 + 0.534448i
\(115\) 0 0
\(116\) 0 0
\(117\) −2.14093 6.58911i −0.197929 0.609164i
\(118\) −6.42280 + 19.7673i −0.591266 + 1.81973i
\(119\) −9.70820 7.05342i −0.889950 0.646586i
\(120\) −1.73205 −0.158114
\(121\) 0 0
\(122\) 15.0000 1.35804
\(123\) 9.80881 + 7.12652i 0.884431 + 0.642576i
\(124\) −2.47214 + 7.60845i −0.222004 + 0.683259i
\(125\) −0.309017 0.951057i −0.0276393 0.0850651i
\(126\) −4.85410 + 3.52671i −0.432438 + 0.314184i
\(127\) −1.40126 + 1.01807i −0.124342 + 0.0903395i −0.648218 0.761455i \(-0.724485\pi\)
0.523876 + 0.851794i \(0.324485\pi\)
\(128\) 3.74663 + 11.5309i 0.331159 + 1.01920i
\(129\) −2.67617 + 8.23639i −0.235623 + 0.725174i
\(130\) 4.85410 + 3.52671i 0.425733 + 0.309313i
\(131\) −3.46410 −0.302660 −0.151330 0.988483i \(-0.548356\pi\)
−0.151330 + 0.988483i \(0.548356\pi\)
\(132\) 0 0
\(133\) 6.00000 0.520266
\(134\) 7.00629 + 5.09037i 0.605252 + 0.439741i
\(135\) −1.54508 + 4.75528i −0.132980 + 0.409270i
\(136\) 3.70820 + 11.4127i 0.317976 + 0.978629i
\(137\) −14.5623 + 10.5801i −1.24414 + 0.903922i −0.997867 0.0652782i \(-0.979207\pi\)
−0.246275 + 0.969200i \(0.579207\pi\)
\(138\) 0 0
\(139\) 4.28187 + 13.1782i 0.363183 + 1.11776i 0.951111 + 0.308849i \(0.0999438\pi\)
−0.587928 + 0.808913i \(0.700056\pi\)
\(140\) 0.535233 1.64728i 0.0452355 0.139220i
\(141\) 7.28115 + 5.29007i 0.613184 + 0.445504i
\(142\) −20.7846 −1.74421
\(143\) 0 0
\(144\) 10.0000 0.833333
\(145\) 0 0
\(146\) 0 0
\(147\) 1.23607 + 3.80423i 0.101949 + 0.313767i
\(148\) 6.47214 4.70228i 0.532006 0.386525i
\(149\) 15.4138 11.1988i 1.26275 0.917443i 0.263862 0.964560i \(-0.415004\pi\)
0.998889 + 0.0471179i \(0.0150037\pi\)
\(150\) −0.535233 1.64728i −0.0437016 0.134500i
\(151\) −6.42280 + 19.7673i −0.522680 + 1.60864i 0.246179 + 0.969224i \(0.420825\pi\)
−0.768859 + 0.639419i \(0.779175\pi\)
\(152\) −4.85410 3.52671i −0.393720 0.286054i
\(153\) 13.8564 1.12022
\(154\) 0 0
\(155\) 8.00000 0.642575
\(156\) 2.80252 + 2.03615i 0.224381 + 0.163022i
\(157\) 1.23607 3.80423i 0.0986490 0.303610i −0.889538 0.456860i \(-0.848974\pi\)
0.988187 + 0.153250i \(0.0489740\pi\)
\(158\) −5.56231 17.1190i −0.442513 1.36192i
\(159\) 4.85410 3.52671i 0.384955 0.279686i
\(160\) −4.20378 + 3.05422i −0.332338 + 0.241457i
\(161\) 0 0
\(162\) 0.535233 1.64728i 0.0420519 0.129422i
\(163\) 15.3713 + 11.1679i 1.20397 + 0.874739i 0.994670 0.103111i \(-0.0328798\pi\)
0.209305 + 0.977850i \(0.432880\pi\)
\(164\) 12.1244 0.946753
\(165\) 0 0
\(166\) 6.00000 0.465690
\(167\) 4.20378 + 3.05422i 0.325298 + 0.236343i 0.738433 0.674327i \(-0.235566\pi\)
−0.413135 + 0.910670i \(0.635566\pi\)
\(168\) −0.927051 + 2.85317i −0.0715235 + 0.220127i
\(169\) −0.309017 0.951057i −0.0237705 0.0731582i
\(170\) −9.70820 + 7.05342i −0.744585 + 0.540973i
\(171\) −5.60503 + 4.07230i −0.428628 + 0.311416i
\(172\) 2.67617 + 8.23639i 0.204056 + 0.628019i
\(173\) 3.21140 9.88367i 0.244158 0.751441i −0.751616 0.659601i \(-0.770725\pi\)
0.995774 0.0918401i \(-0.0292749\pi\)
\(174\) 0 0
\(175\) −1.73205 −0.130931
\(176\) 0 0
\(177\) 12.0000 0.901975
\(178\) −4.20378 3.05422i −0.315086 0.228924i
\(179\) −5.56231 + 17.1190i −0.415746 + 1.27954i 0.495835 + 0.868416i \(0.334862\pi\)
−0.911582 + 0.411119i \(0.865138\pi\)
\(180\) 0.618034 + 1.90211i 0.0460655 + 0.141775i
\(181\) −8.89919 + 6.46564i −0.661471 + 0.480587i −0.867160 0.498031i \(-0.834057\pi\)
0.205688 + 0.978618i \(0.434057\pi\)
\(182\) 8.40755 6.10844i 0.623209 0.452788i
\(183\) −2.67617 8.23639i −0.197828 0.608852i
\(184\) 0 0
\(185\) −6.47214 4.70228i −0.475841 0.345719i
\(186\) 13.8564 1.01600
\(187\) 0 0
\(188\) 9.00000 0.656392
\(189\) 7.00629 + 5.09037i 0.509633 + 0.370270i
\(190\) 1.85410 5.70634i 0.134511 0.413981i
\(191\) −1.85410 5.70634i −0.134158 0.412896i 0.861300 0.508097i \(-0.169651\pi\)
−0.995458 + 0.0952005i \(0.969651\pi\)
\(192\) 0.809017 0.587785i 0.0583858 0.0424197i
\(193\) 2.80252 2.03615i 0.201730 0.146565i −0.482334 0.875987i \(-0.660211\pi\)
0.684064 + 0.729422i \(0.260211\pi\)
\(194\) −5.35233 16.4728i −0.384275 1.18268i
\(195\) 1.07047 3.29456i 0.0766577 0.235928i
\(196\) 3.23607 + 2.35114i 0.231148 + 0.167939i
\(197\) −10.3923 −0.740421 −0.370211 0.928948i \(-0.620714\pi\)
−0.370211 + 0.928948i \(0.620714\pi\)
\(198\) 0 0
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) 1.40126 + 1.01807i 0.0990839 + 0.0719887i
\(201\) 1.54508 4.75528i 0.108982 0.335412i
\(202\) −0.927051 2.85317i −0.0652271 0.200748i
\(203\) 0 0
\(204\) −5.60503 + 4.07230i −0.392431 + 0.285118i
\(205\) −3.74663 11.5309i −0.261676 0.805356i
\(206\) −2.14093 + 6.58911i −0.149166 + 0.459085i
\(207\) 0 0
\(208\) −17.3205 −1.20096
\(209\) 0 0
\(210\) −3.00000 −0.207020
\(211\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(212\) 1.85410 5.70634i 0.127340 0.391913i
\(213\) 3.70820 + 11.4127i 0.254082 + 0.781984i
\(214\) −2.42705 + 1.76336i −0.165910 + 0.120541i
\(215\) 7.00629 5.09037i 0.477825 0.347160i
\(216\) −2.67617 8.23639i −0.182090 0.560415i
\(217\) 4.28187 13.1782i 0.290672 0.894596i
\(218\) −2.42705 1.76336i −0.164381 0.119430i
\(219\) 0 0
\(220\) 0 0
\(221\) −24.0000 −1.61441
\(222\) −11.2101 8.14459i −0.752371 0.546629i
\(223\) −5.87132 + 18.0701i −0.393173 + 1.21006i 0.537203 + 0.843453i \(0.319481\pi\)
−0.930375 + 0.366608i \(0.880519\pi\)
\(224\) 2.78115 + 8.55951i 0.185824 + 0.571906i
\(225\) 1.61803 1.17557i 0.107869 0.0783714i
\(226\) 8.40755 6.10844i 0.559262 0.406328i
\(227\) 5.88756 + 18.1201i 0.390771 + 1.20267i 0.932206 + 0.361928i \(0.117881\pi\)
−0.541435 + 0.840743i \(0.682119\pi\)
\(228\) 1.07047 3.29456i 0.0708934 0.218187i
\(229\) −5.66312 4.11450i −0.374229 0.271894i 0.384733 0.923028i \(-0.374293\pi\)
−0.758963 + 0.651134i \(0.774293\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.80252 + 2.03615i 0.183599 + 0.133392i 0.675788 0.737096i \(-0.263803\pi\)
−0.492189 + 0.870488i \(0.663803\pi\)
\(234\) −3.70820 + 11.4127i −0.242413 + 0.746070i
\(235\) −2.78115 8.55951i −0.181422 0.558361i
\(236\) 9.70820 7.05342i 0.631950 0.459139i
\(237\) −8.40755 + 6.10844i −0.546129 + 0.396786i
\(238\) 6.42280 + 19.7673i 0.416328 + 1.28133i
\(239\) 1.07047 3.29456i 0.0692427 0.213107i −0.910447 0.413625i \(-0.864262\pi\)
0.979690 + 0.200518i \(0.0642625\pi\)
\(240\) 4.04508 + 2.93893i 0.261109 + 0.189707i
\(241\) −19.0526 −1.22728 −0.613642 0.789585i \(-0.710296\pi\)
−0.613642 + 0.789585i \(0.710296\pi\)
\(242\) 0 0
\(243\) −16.0000 −1.02640
\(244\) −7.00629 5.09037i −0.448532 0.325878i
\(245\) 1.23607 3.80423i 0.0789695 0.243043i
\(246\) −6.48936 19.9722i −0.413746 1.27338i
\(247\) 9.70820 7.05342i 0.617718 0.448799i
\(248\) −11.2101 + 8.14459i −0.711840 + 0.517182i
\(249\) −1.07047 3.29456i −0.0678380 0.208784i
\(250\) −0.535233 + 1.64728i −0.0338511 + 0.104183i
\(251\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(252\) 3.46410 0.218218
\(253\) 0 0
\(254\) 3.00000 0.188237
\(255\) 5.60503 + 4.07230i 0.351001 + 0.255017i
\(256\) 5.87132 18.0701i 0.366958 1.12938i
\(257\) 3.70820 + 11.4127i 0.231311 + 0.711903i 0.997589 + 0.0693940i \(0.0221066\pi\)
−0.766278 + 0.642509i \(0.777893\pi\)
\(258\) 12.1353 8.81678i 0.755508 0.548909i
\(259\) −11.2101 + 8.14459i −0.696560 + 0.506080i
\(260\) −1.07047 3.29456i −0.0663875 0.204320i
\(261\) 0 0
\(262\) 4.85410 + 3.52671i 0.299887 + 0.217881i
\(263\) 24.2487 1.49524 0.747620 0.664127i \(-0.231197\pi\)
0.747620 + 0.664127i \(0.231197\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) −8.40755 6.10844i −0.515500 0.374533i
\(267\) −0.927051 + 2.85317i −0.0567346 + 0.174611i
\(268\) −1.54508 4.75528i −0.0943811 0.290475i
\(269\) 12.1353 8.81678i 0.739900 0.537568i −0.152780 0.988260i \(-0.548823\pi\)
0.892680 + 0.450692i \(0.148823\pi\)
\(270\) 7.00629 5.09037i 0.426389 0.309790i
\(271\) −4.28187 13.1782i −0.260105 0.800520i −0.992781 0.119943i \(-0.961729\pi\)
0.732676 0.680578i \(-0.238271\pi\)
\(272\) 10.7047 32.9456i 0.649066 1.99762i
\(273\) −4.85410 3.52671i −0.293784 0.213446i
\(274\) 31.1769 1.88347
\(275\) 0 0
\(276\) 0 0
\(277\) −8.40755 6.10844i −0.505161 0.367021i 0.305824 0.952088i \(-0.401068\pi\)
−0.810985 + 0.585067i \(0.801068\pi\)
\(278\) 7.41641 22.8254i 0.444807 1.36897i
\(279\) 4.94427 + 15.2169i 0.296006 + 0.911012i
\(280\) 2.42705 1.76336i 0.145044 0.105381i
\(281\) 5.60503 4.07230i 0.334368 0.242933i −0.407914 0.913021i \(-0.633744\pi\)
0.742282 + 0.670088i \(0.233744\pi\)
\(282\) −4.81710 14.8255i −0.286854 0.882846i
\(283\) −1.60570 + 4.94183i −0.0954489 + 0.293762i −0.987370 0.158429i \(-0.949357\pi\)
0.891921 + 0.452190i \(0.149357\pi\)
\(284\) 9.70820 + 7.05342i 0.576076 + 0.418544i
\(285\) −3.46410 −0.205196
\(286\) 0 0
\(287\) −21.0000 −1.23959
\(288\) −8.40755 6.10844i −0.495420 0.359943i
\(289\) 9.57953 29.4828i 0.563502 1.73428i
\(290\) 0 0
\(291\) −8.09017 + 5.87785i −0.474254 + 0.344566i
\(292\) 0 0
\(293\) −2.14093 6.58911i −0.125075 0.384940i 0.868840 0.495093i \(-0.164866\pi\)
−0.993915 + 0.110153i \(0.964866\pi\)
\(294\) 2.14093 6.58911i 0.124862 0.384285i
\(295\) −9.70820 7.05342i −0.565233 0.410666i
\(296\) 13.8564 0.805387
\(297\) 0 0
\(298\) −33.0000 −1.91164
\(299\) 0 0
\(300\) −0.309017 + 0.951057i −0.0178411 + 0.0549093i
\(301\) −4.63525 14.2658i −0.267172 0.822270i
\(302\) 29.1246 21.1603i 1.67593 1.21764i
\(303\) −1.40126 + 1.01807i −0.0805002 + 0.0584868i
\(304\) 5.35233 + 16.4728i 0.306977 + 0.944779i
\(305\) −2.67617 + 8.23639i −0.153237 + 0.471614i
\(306\) −19.4164 14.1068i −1.10996 0.806435i
\(307\) −10.3923 −0.593120 −0.296560 0.955014i \(-0.595840\pi\)
−0.296560 + 0.955014i \(0.595840\pi\)
\(308\) 0 0
\(309\) 4.00000 0.227552
\(310\) −11.2101 8.14459i −0.636689 0.462582i
\(311\) −1.85410 + 5.70634i −0.105136 + 0.323577i −0.989762 0.142724i \(-0.954414\pi\)
0.884626 + 0.466301i \(0.154414\pi\)
\(312\) 1.85410 + 5.70634i 0.104968 + 0.323058i
\(313\) −8.09017 + 5.87785i −0.457283 + 0.332236i −0.792465 0.609918i \(-0.791202\pi\)
0.335181 + 0.942154i \(0.391202\pi\)
\(314\) −5.60503 + 4.07230i −0.316310 + 0.229813i
\(315\) −1.07047 3.29456i −0.0603139 0.185627i
\(316\) −3.21140 + 9.88367i −0.180655 + 0.556000i
\(317\) 4.85410 + 3.52671i 0.272634 + 0.198080i 0.715698 0.698410i \(-0.246109\pi\)
−0.443064 + 0.896490i \(0.646109\pi\)
\(318\) −10.3923 −0.582772
\(319\) 0 0
\(320\) −1.00000 −0.0559017
\(321\) 1.40126 + 1.01807i 0.0782106 + 0.0568233i
\(322\) 0 0
\(323\) 7.41641 + 22.8254i 0.412660 + 1.27004i
\(324\) −0.809017 + 0.587785i −0.0449454 + 0.0326547i
\(325\) −2.80252 + 2.03615i −0.155456 + 0.112945i
\(326\) −10.1694 31.2983i −0.563233 1.73345i
\(327\) −0.535233 + 1.64728i −0.0295985 + 0.0910947i
\(328\) 16.9894 + 12.3435i 0.938080 + 0.681555i
\(329\) −15.5885 −0.859419
\(330\) 0 0
\(331\) −34.0000 −1.86881 −0.934405 0.356214i \(-0.884068\pi\)
−0.934405 + 0.356214i \(0.884068\pi\)
\(332\) −2.80252 2.03615i −0.153808 0.111748i
\(333\) 4.94427 15.2169i 0.270944 0.833881i
\(334\) −2.78115 8.55951i −0.152178 0.468355i
\(335\) −4.04508 + 2.93893i −0.221007 + 0.160571i
\(336\) 7.00629 5.09037i 0.382225 0.277702i
\(337\) 3.21140 + 9.88367i 0.174936 + 0.538398i 0.999631 0.0271807i \(-0.00865295\pi\)
−0.824694 + 0.565578i \(0.808653\pi\)
\(338\) −0.535233 + 1.64728i −0.0291128 + 0.0896001i
\(339\) −4.85410 3.52671i −0.263639 0.191545i
\(340\) 6.92820 0.375735
\(341\) 0 0
\(342\) 12.0000 0.648886
\(343\) −15.4138 11.1988i −0.832269 0.604679i
\(344\) −4.63525 + 14.2658i −0.249916 + 0.769163i
\(345\) 0 0
\(346\) −14.5623 + 10.5801i −0.782874 + 0.568792i
\(347\) 9.80881 7.12652i 0.526564 0.382572i −0.292507 0.956263i \(-0.594489\pi\)
0.819071 + 0.573692i \(0.194489\pi\)
\(348\) 0 0
\(349\) 10.7047 32.9456i 0.573007 1.76354i −0.0698585 0.997557i \(-0.522255\pi\)
0.642866 0.765979i \(-0.277745\pi\)
\(350\) 2.42705 + 1.76336i 0.129731 + 0.0942553i
\(351\) 17.3205 0.924500
\(352\) 0 0
\(353\) 24.0000 1.27739 0.638696 0.769460i \(-0.279474\pi\)
0.638696 + 0.769460i \(0.279474\pi\)
\(354\) −16.8151 12.2169i −0.893713 0.649320i
\(355\) 3.70820 11.4127i 0.196811 0.605722i
\(356\) 0.927051 + 2.85317i 0.0491336 + 0.151218i
\(357\) 9.70820 7.05342i 0.513813 0.373307i
\(358\) 25.2227 18.3253i 1.33306 0.968524i
\(359\) −1.07047 3.29456i −0.0564970 0.173880i 0.918826 0.394663i \(-0.129139\pi\)
−0.975323 + 0.220783i \(0.929139\pi\)
\(360\) −1.07047 + 3.29456i −0.0564185 + 0.173638i
\(361\) 5.66312 + 4.11450i 0.298059 + 0.216552i
\(362\) 19.0526 1.00138
\(363\) 0 0
\(364\) −6.00000 −0.314485
\(365\) 0 0
\(366\) −4.63525 + 14.2658i −0.242289 + 0.745688i
\(367\) 5.25329 + 16.1680i 0.274219 + 0.843961i 0.989425 + 0.145046i \(0.0463331\pi\)
−0.715205 + 0.698914i \(0.753667\pi\)
\(368\) 0 0
\(369\) 19.6176 14.2530i 1.02125 0.741983i
\(370\) 4.28187 + 13.1782i 0.222604 + 0.685103i
\(371\) −3.21140 + 9.88367i −0.166728 + 0.513135i
\(372\) −6.47214 4.70228i −0.335565 0.243802i
\(373\) −13.8564 −0.717458 −0.358729 0.933442i \(-0.616790\pi\)
−0.358729 + 0.933442i \(0.616790\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 12.6113 + 9.16267i 0.650380 + 0.472528i
\(377\) 0 0
\(378\) −4.63525 14.2658i −0.238412 0.733756i
\(379\) 27.5066 19.9847i 1.41292 1.02655i 0.420028 0.907511i \(-0.362020\pi\)
0.992890 0.119034i \(-0.0379797\pi\)
\(380\) −2.80252 + 2.03615i −0.143766 + 0.104452i
\(381\) −0.535233 1.64728i −0.0274208 0.0843926i
\(382\) −3.21140 + 9.88367i −0.164309 + 0.505693i
\(383\) −19.4164 14.1068i −0.992132 0.720826i −0.0317451 0.999496i \(-0.510106\pi\)
−0.960387 + 0.278670i \(0.910106\pi\)
\(384\) −12.1244 −0.618718
\(385\) 0 0
\(386\) −6.00000 −0.305392
\(387\) 14.0126 + 10.1807i 0.712300 + 0.517516i
\(388\) −3.09017 + 9.51057i −0.156880 + 0.482826i
\(389\) 0.927051 + 2.85317i 0.0470034 + 0.144661i 0.971804 0.235791i \(-0.0757682\pi\)
−0.924800 + 0.380453i \(0.875768\pi\)
\(390\) −4.85410 + 3.52671i −0.245797 + 0.178582i
\(391\) 0 0
\(392\) 2.14093 + 6.58911i 0.108133 + 0.332800i
\(393\) 1.07047 3.29456i 0.0539979 0.166188i
\(394\) 14.5623 + 10.5801i 0.733638 + 0.533019i
\(395\) 10.3923 0.522894
\(396\) 0 0
\(397\) 20.0000 1.00377 0.501886 0.864934i \(-0.332640\pi\)
0.501886 + 0.864934i \(0.332640\pi\)
\(398\) 19.6176 + 14.2530i 0.983342 + 0.714440i
\(399\) −1.85410 + 5.70634i −0.0928212 + 0.285674i
\(400\) −1.54508 4.75528i −0.0772542 0.237764i
\(401\) −21.8435 + 15.8702i −1.09081 + 0.792520i −0.979536 0.201270i \(-0.935493\pi\)
−0.111274 + 0.993790i \(0.535493\pi\)
\(402\) −7.00629 + 5.09037i −0.349442 + 0.253885i
\(403\) −8.56373 26.3565i −0.426590 1.31291i
\(404\) −0.535233 + 1.64728i −0.0266288 + 0.0819552i
\(405\) 0.809017 + 0.587785i 0.0402004 + 0.0292073i
\(406\) 0 0
\(407\) 0 0
\(408\) −12.0000 −0.594089
\(409\) −4.20378 3.05422i −0.207863 0.151022i 0.478983 0.877824i \(-0.341006\pi\)
−0.686846 + 0.726803i \(0.741006\pi\)
\(410\) −6.48936 + 19.9722i −0.320486 + 0.986356i
\(411\) −5.56231 17.1190i −0.274368 0.844419i
\(412\) 3.23607 2.35114i 0.159430 0.115832i
\(413\) −16.8151 + 12.2169i −0.827417 + 0.601154i
\(414\) 0 0
\(415\) −1.07047 + 3.29456i −0.0525471 + 0.161723i
\(416\) 14.5623 + 10.5801i 0.713976 + 0.518734i
\(417\) −13.8564 −0.678551
\(418\) 0 0
\(419\) 18.0000 0.879358 0.439679 0.898155i \(-0.355092\pi\)
0.439679 + 0.898155i \(0.355092\pi\)
\(420\) 1.40126 + 1.01807i 0.0683744 + 0.0496769i
\(421\) −5.25329 + 16.1680i −0.256030 + 0.787978i 0.737595 + 0.675243i \(0.235961\pi\)
−0.993625 + 0.112735i \(0.964039\pi\)
\(422\) 0 0
\(423\) 14.5623 10.5801i 0.708044 0.514424i
\(424\) 8.40755 6.10844i 0.408307 0.296652i
\(425\) −2.14093 6.58911i −0.103850 0.319619i
\(426\) 6.42280 19.7673i 0.311186 0.957731i
\(427\) 12.1353 + 8.81678i 0.587266 + 0.426674i
\(428\) 1.73205 0.0837218
\(429\) 0 0
\(430\) −15.0000 −0.723364
\(431\) −30.8277 22.3976i −1.48492 1.07886i −0.975931 0.218081i \(-0.930020\pi\)
−0.508987 0.860774i \(-0.669980\pi\)
\(432\) −7.72542 + 23.7764i −0.371690 + 1.14394i
\(433\) 9.88854 + 30.4338i 0.475213 + 1.46256i 0.845670 + 0.533706i \(0.179201\pi\)
−0.370457 + 0.928850i \(0.620799\pi\)
\(434\) −19.4164 + 14.1068i −0.932017 + 0.677150i
\(435\) 0 0
\(436\) 0.535233 + 1.64728i 0.0256330 + 0.0788903i
\(437\) 0 0
\(438\) 0 0
\(439\) −27.7128 −1.32266 −0.661330 0.750095i \(-0.730008\pi\)
−0.661330 + 0.750095i \(0.730008\pi\)
\(440\) 0 0
\(441\) 8.00000 0.380952
\(442\) 33.6302 + 24.4338i 1.59963 + 1.16220i
\(443\) −4.63525 + 14.2658i −0.220228 + 0.677791i 0.778513 + 0.627628i \(0.215974\pi\)
−0.998741 + 0.0501629i \(0.984026\pi\)
\(444\) 2.47214 + 7.60845i 0.117322 + 0.361081i
\(445\) 2.42705 1.76336i 0.115053 0.0835911i
\(446\) 26.6239 19.3434i 1.26068 0.915937i
\(447\) 5.88756 + 18.1201i 0.278472 + 0.857049i
\(448\) −0.535233 + 1.64728i −0.0252874 + 0.0778266i
\(449\) 12.1353 + 8.81678i 0.572698 + 0.416090i 0.836084 0.548601i \(-0.184839\pi\)
−0.263386 + 0.964690i \(0.584839\pi\)
\(450\) −3.46410 −0.163299
\(451\) 0 0
\(452\) −6.00000 −0.282216
\(453\) −16.8151 12.2169i −0.790042 0.573999i
\(454\) 10.1976 31.3849i 0.478595 1.47296i
\(455\) 1.85410 + 5.70634i 0.0869216 + 0.267517i
\(456\) 4.85410 3.52671i 0.227314 0.165153i
\(457\) −16.8151 + 12.2169i −0.786577 + 0.571482i −0.906946 0.421247i \(-0.861592\pi\)
0.120368 + 0.992729i \(0.461592\pi\)
\(458\) 3.74663 + 11.5309i 0.175069 + 0.538806i
\(459\) −10.7047 + 32.9456i −0.499651 + 1.53777i
\(460\) 0 0
\(461\) −12.1244 −0.564688 −0.282344 0.959313i \(-0.591112\pi\)
−0.282344 + 0.959313i \(0.591112\pi\)
\(462\) 0 0
\(463\) 41.0000 1.90543 0.952716 0.303863i \(-0.0982765\pi\)
0.952716 + 0.303863i \(0.0982765\pi\)
\(464\) 0 0
\(465\) −2.47214 + 7.60845i −0.114643 + 0.352834i
\(466\) −1.85410 5.70634i −0.0858896 0.264341i
\(467\) −2.42705 + 1.76336i −0.112311 + 0.0815984i −0.642523 0.766267i \(-0.722112\pi\)
0.530212 + 0.847865i \(0.322112\pi\)
\(468\) 5.60503 4.07230i 0.259093 0.188242i
\(469\) 2.67617 + 8.23639i 0.123574 + 0.380321i
\(470\) −4.81710 + 14.8255i −0.222196 + 0.683849i
\(471\) 3.23607 + 2.35114i 0.149110 + 0.108335i
\(472\) 20.7846 0.956689
\(473\) 0 0
\(474\) 18.0000 0.826767
\(475\) 2.80252 + 2.03615i 0.128588 + 0.0934249i
\(476\) 3.70820 11.4127i 0.169965 0.523099i
\(477\) −3.70820 11.4127i −0.169787 0.522551i
\(478\) −4.85410 + 3.52671i −0.222021 + 0.161308i
\(479\) −8.40755 + 6.10844i −0.384151 + 0.279102i −0.763054 0.646334i \(-0.776301\pi\)
0.378904 + 0.925436i \(0.376301\pi\)
\(480\) −1.60570 4.94183i −0.0732898 0.225563i
\(481\) −8.56373 + 26.3565i −0.390472 + 1.20175i
\(482\) 26.6976 + 19.3969i 1.21604 + 0.883505i
\(483\) 0 0
\(484\) 0 0
\(485\) 10.0000 0.454077
\(486\) 22.4201 + 16.2892i 1.01700 + 0.738892i
\(487\) −6.18034 + 19.0211i −0.280058 + 0.861930i 0.707779 + 0.706434i \(0.249697\pi\)
−0.987837 + 0.155495i \(0.950303\pi\)
\(488\) −4.63525 14.2658i −0.209828 0.645785i
\(489\) −15.3713 + 11.1679i −0.695115 + 0.505031i
\(490\) −5.60503 + 4.07230i −0.253210 + 0.183968i
\(491\) 7.49326 + 23.0619i 0.338166 + 1.04077i 0.965141 + 0.261729i \(0.0842928\pi\)
−0.626975 + 0.779039i \(0.715707\pi\)
\(492\) −3.74663 + 11.5309i −0.168911 + 0.519855i
\(493\) 0 0
\(494\) −20.7846 −0.935144
\(495\) 0 0
\(496\) 40.0000 1.79605
\(497\) −16.8151 12.2169i −0.754260 0.548002i
\(498\) −1.85410 + 5.70634i −0.0830843 + 0.255707i
\(499\) −11.7426 36.1401i −0.525673 1.61786i −0.762981 0.646421i \(-0.776265\pi\)
0.237308 0.971434i \(-0.423735\pi\)
\(500\) 0.809017 0.587785i 0.0361803 0.0262866i
\(501\) −4.20378 + 3.05422i −0.187811 + 0.136453i
\(502\) 0 0
\(503\) 2.67617 8.23639i 0.119324 0.367243i −0.873500 0.486824i \(-0.838155\pi\)
0.992824 + 0.119582i \(0.0381553\pi\)
\(504\) 4.85410 + 3.52671i 0.216219 + 0.157092i
\(505\) 1.73205 0.0770752
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) −1.40126 1.01807i −0.0621708 0.0451697i
\(509\) 4.63525 14.2658i 0.205454 0.632323i −0.794240 0.607604i \(-0.792131\pi\)
0.999694 0.0247189i \(-0.00786908\pi\)
\(510\) −3.70820 11.4127i −0.164202 0.505362i
\(511\) 0 0
\(512\) −7.00629 + 5.09037i −0.309637 + 0.224965i
\(513\) −5.35233 16.4728i −0.236311 0.727291i
\(514\) 6.42280 19.7673i 0.283297 0.871900i
\(515\) −3.23607 2.35114i −0.142598 0.103604i
\(516\) −8.66025 −0.381246
\(517\) 0 0
\(518\) 24.0000 1.05450
\(519\) 8.40755 + 6.10844i 0.369051 + 0.268131i
\(520\) 1.85410 5.70634i 0.0813077 0.250240i
\(521\) 4.63525 + 14.2658i 0.203074 + 0.624998i 0.999787 + 0.0206400i \(0.00657038\pi\)
−0.796713 + 0.604358i \(0.793430\pi\)
\(522\) 0 0
\(523\) 14.0126 10.1807i 0.612728 0.445173i −0.237646 0.971352i \(-0.576376\pi\)
0.850374 + 0.526179i \(0.176376\pi\)
\(524\) −1.07047 3.29456i −0.0467635 0.143923i
\(525\) 0.535233 1.64728i 0.0233595 0.0718931i
\(526\) −33.9787 24.6870i −1.48154 1.07640i
\(527\) 55.4256 2.41438
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 8.40755 + 6.10844i 0.365201 + 0.265334i
\(531\) 7.41641 22.8254i 0.321845 0.990536i
\(532\) 1.85410 + 5.70634i 0.0803855 + 0.247401i
\(533\) −33.9787 + 24.6870i −1.47178 + 1.06931i
\(534\) 4.20378 3.05422i 0.181915 0.132169i
\(535\) −0.535233 1.64728i −0.0231401 0.0712180i
\(536\) 2.67617 8.23639i 0.115593 0.355758i
\(537\) −14.5623 10.5801i −0.628410 0.456567i
\(538\) −25.9808 −1.12011
\(539\) 0 0
\(540\) −5.00000 −0.215166
\(541\) 4.20378 + 3.05422i 0.180734 + 0.131311i 0.674474 0.738299i \(-0.264370\pi\)
−0.493740 + 0.869610i \(0.664370\pi\)
\(542\) −7.41641 + 22.8254i −0.318562 + 0.980433i
\(543\) −3.39919 10.4616i −0.145873 0.448951i
\(544\) −29.1246 + 21.1603i −1.24871 + 0.907239i
\(545\) 1.40126 1.01807i 0.0600233 0.0436095i
\(546\) 3.21140 + 9.88367i 0.137435 + 0.422982i
\(547\) −13.9161 + 42.8292i −0.595008 + 1.83125i −0.0403207 + 0.999187i \(0.512838\pi\)
−0.554687 + 0.832059i \(0.687162\pi\)
\(548\) −14.5623 10.5801i −0.622071 0.451961i
\(549\) −17.3205 −0.739221
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 5.56231 17.1190i 0.236533 0.727975i
\(554\) 5.56231 + 17.1190i 0.236320 + 0.727317i
\(555\) 6.47214 4.70228i 0.274727 0.199601i
\(556\) −11.2101 + 8.14459i −0.475413 + 0.345408i
\(557\) −2.14093 6.58911i −0.0907142 0.279190i 0.895399 0.445265i \(-0.146891\pi\)
−0.986113 + 0.166075i \(0.946891\pi\)
\(558\) 8.56373 26.3565i 0.362532 1.11576i
\(559\) −24.2705 17.6336i −1.02653 0.745820i
\(560\) −8.66025 −0.365963
\(561\) 0 0
\(562\) −12.0000 −0.506189
\(563\) 12.6113 + 9.16267i 0.531504 + 0.386160i 0.820920 0.571043i \(-0.193461\pi\)
−0.289416 + 0.957203i \(0.593461\pi\)
\(564\) −2.78115 + 8.55951i −0.117108 + 0.360420i
\(565\) 1.85410 + 5.70634i 0.0780027 + 0.240067i
\(566\) 7.28115 5.29007i 0.306050 0.222358i
\(567\) 1.40126 1.01807i 0.0588473 0.0427551i
\(568\) 6.42280 + 19.7673i 0.269495 + 0.829419i
\(569\) −0.535233 + 1.64728i −0.0224381 + 0.0690575i −0.961649 0.274285i \(-0.911559\pi\)
0.939210 + 0.343342i \(0.111559\pi\)
\(570\) 4.85410 + 3.52671i 0.203316 + 0.147718i
\(571\) −3.46410 −0.144968 −0.0724841 0.997370i \(-0.523093\pi\)
−0.0724841 + 0.997370i \(0.523093\pi\)
\(572\) 0 0
\(573\) 6.00000 0.250654
\(574\) 29.4264 + 21.3796i 1.22824 + 0.892365i
\(575\) 0 0
\(576\) −0.618034 1.90211i −0.0257514 0.0792547i
\(577\) 16.1803 11.7557i 0.673596 0.489396i −0.197631 0.980277i \(-0.563325\pi\)
0.871227 + 0.490880i \(0.163325\pi\)
\(578\) −43.4390 + 31.5603i −1.80682 + 1.31274i
\(579\) 1.07047 + 3.29456i 0.0444871 + 0.136917i
\(580\) 0 0
\(581\) 4.85410 + 3.52671i 0.201382 + 0.146313i
\(582\) 17.3205 0.717958
\(583\) 0 0
\(584\) 0 0
\(585\) −5.60503 4.07230i −0.231740 0.168369i
\(586\) −3.70820 + 11.4127i −0.153184 + 0.471453i
\(587\) 6.48936 + 19.9722i 0.267844 + 0.824340i 0.991024 + 0.133681i \(0.0426797\pi\)
−0.723180 + 0.690660i \(0.757320\pi\)
\(588\) −3.23607 + 2.35114i −0.133453 + 0.0969594i
\(589\) −22.4201 + 16.2892i −0.923806 + 0.671184i
\(590\) 6.42280 + 19.7673i 0.264422 + 0.813808i
\(591\) 3.21140 9.88367i 0.132099 0.406560i
\(592\) −32.3607 23.5114i −1.33002 0.966313i
\(593\) 24.2487 0.995775 0.497888 0.867242i \(-0.334109\pi\)
0.497888 + 0.867242i \(0.334109\pi\)
\(594\) 0 0
\(595\) −12.0000 −0.491952
\(596\) 15.4138 + 11.1988i 0.631376 + 0.458721i
\(597\) 4.32624 13.3148i 0.177061 0.544938i
\(598\) 0 0
\(599\) −24.2705 + 17.6336i −0.991666 + 0.720488i −0.960285 0.279020i \(-0.909990\pi\)
−0.0313808 + 0.999508i \(0.509990\pi\)
\(600\) −1.40126 + 1.01807i −0.0572061 + 0.0415627i
\(601\) 6.42280 + 19.7673i 0.261991 + 0.806327i 0.992371 + 0.123285i \(0.0393431\pi\)
−0.730380 + 0.683041i \(0.760657\pi\)
\(602\) −8.02850 + 24.7092i −0.327217 + 1.00707i
\(603\) −8.09017 5.87785i −0.329457 0.239365i
\(604\) −20.7846 −0.845714
\(605\) 0 0
\(606\) 3.00000 0.121867
\(607\) 2.80252 + 2.03615i 0.113751 + 0.0826447i 0.643206 0.765693i \(-0.277604\pi\)
−0.529456 + 0.848338i \(0.677604\pi\)
\(608\) 5.56231 17.1190i 0.225581 0.694268i
\(609\) 0 0
\(610\) 12.1353 8.81678i 0.491342 0.356981i
\(611\) −25.2227 + 18.3253i −1.02040 + 0.741364i
\(612\) 4.28187 + 13.1782i 0.173084 + 0.532698i
\(613\) −3.21140 + 9.88367i −0.129707 + 0.399198i −0.994729 0.102536i \(-0.967304\pi\)
0.865022 + 0.501734i \(0.167304\pi\)
\(614\) 14.5623 + 10.5801i 0.587687 + 0.426979i
\(615\) 12.1244 0.488901
\(616\) 0 0
\(617\) −36.0000 −1.44931 −0.724653 0.689114i \(-0.758000\pi\)
−0.724653 + 0.689114i \(0.758000\pi\)
\(618\) −5.60503 4.07230i −0.225468 0.163812i
\(619\) 6.18034 19.0211i 0.248409 0.764524i −0.746648 0.665219i \(-0.768338\pi\)
0.995057 0.0993047i \(-0.0316619\pi\)
\(620\) 2.47214 + 7.60845i 0.0992834 + 0.305563i
\(621\) 0 0
\(622\) 8.40755 6.10844i 0.337112 0.244926i
\(623\) −1.60570 4.94183i −0.0643310 0.197990i
\(624\) 5.35233 16.4728i 0.214265 0.659439i
\(625\) −0.809017 0.587785i −0.0323607 0.0235114i
\(626\) 17.3205 0.692267
\(627\) 0 0
\(628\) 4.00000 0.159617
\(629\) −44.8403 32.5784i −1.78790 1.29898i
\(630\) −1.85410 + 5.70634i −0.0738692 + 0.227346i
\(631\) 8.65248 + 26.6296i 0.344450 + 1.06011i 0.961878 + 0.273480i \(0.0881746\pi\)
−0.617428 + 0.786627i \(0.711825\pi\)
\(632\) −14.5623 + 10.5801i −0.579257 + 0.420855i
\(633\) 0 0
\(634\) −3.21140 9.88367i −0.127541 0.392531i
\(635\) −0.535233 + 1.64728i −0.0212401 + 0.0653702i
\(636\) 4.85410 + 3.52671i 0.192478 + 0.139843i
\(637\) −13.8564 −0.549011
\(638\) 0 0
\(639\) 24.0000 0.949425
\(640\) 9.80881 + 7.12652i 0.387727 + 0.281700i
\(641\) 9.27051 28.5317i 0.366163 1.12693i −0.583086 0.812410i \(-0.698155\pi\)
0.949250 0.314524i \(-0.101845\pi\)
\(642\) −0.927051 2.85317i −0.0365878 0.112606i
\(643\) 25.0795 18.2213i 0.989040 0.718580i 0.0293293 0.999570i \(-0.490663\pi\)
0.959711 + 0.280990i \(0.0906628\pi\)
\(644\) 0 0
\(645\) 2.67617 + 8.23639i 0.105374 + 0.324308i
\(646\) 12.8456 39.5347i 0.505403 1.55547i
\(647\) −26.6976 19.3969i −1.04959 0.762571i −0.0774551 0.996996i \(-0.524679\pi\)
−0.972134 + 0.234424i \(0.924679\pi\)
\(648\) −1.73205 −0.0680414
\(649\) 0 0
\(650\) 6.00000 0.235339
\(651\) 11.2101 + 8.14459i 0.439357 + 0.319212i
\(652\) −5.87132 + 18.0701i −0.229939 + 0.707679i
\(653\) −9.27051 28.5317i −0.362783 1.11653i −0.951358 0.308089i \(-0.900311\pi\)
0.588575 0.808443i \(-0.299689\pi\)
\(654\) 2.42705 1.76336i 0.0949052 0.0689527i
\(655\) −2.80252 + 2.03615i −0.109503 + 0.0795589i
\(656\) −18.7332 57.6547i −0.731407 2.25104i
\(657\) 0 0
\(658\) 21.8435 + 15.8702i 0.851547 + 0.618685i
\(659\) 3.46410 0.134942 0.0674711 0.997721i \(-0.478507\pi\)
0.0674711 + 0.997721i \(0.478507\pi\)
\(660\) 0 0
\(661\) 37.0000 1.43913 0.719567 0.694423i \(-0.244340\pi\)
0.719567 + 0.694423i \(0.244340\pi\)
\(662\) 47.6428 + 34.6145i 1.85169 + 1.34533i
\(663\) 7.41641 22.8254i 0.288029 0.886463i
\(664\) −1.85410 5.70634i −0.0719531 0.221449i
\(665\) 4.85410 3.52671i 0.188234 0.136760i
\(666\) −22.4201 + 16.2892i −0.868763 + 0.631193i
\(667\) 0 0
\(668\) −1.60570 + 4.94183i −0.0621264 + 0.191205i
\(669\) −15.3713 11.1679i −0.594290 0.431777i
\(670\) 8.66025 0.334575
\(671\) 0 0
\(672\) −9.00000 −0.347183
\(673\) 16.8151 + 12.2169i 0.648175 + 0.470926i 0.862649 0.505803i \(-0.168804\pi\)
−0.214474 + 0.976730i \(0.568804\pi\)
\(674\) 5.56231 17.1190i 0.214252 0.659400i
\(675\) 1.54508 + 4.75528i 0.0594703 + 0.183031i
\(676\) 0.809017 0.587785i 0.0311160 0.0226071i
\(677\) −22.4201 + 16.2892i −0.861676 + 0.626044i −0.928340 0.371731i \(-0.878764\pi\)
0.0666645 + 0.997775i \(0.478764\pi\)
\(678\) 3.21140 + 9.88367i 0.123333 + 0.379580i
\(679\) 5.35233 16.4728i 0.205404 0.632167i
\(680\) 9.70820 + 7.05342i 0.372293 + 0.270486i
\(681\) −19.0526 −0.730096
\(682\) 0 0
\(683\) −21.0000 −0.803543 −0.401771 0.915740i \(-0.631605\pi\)
−0.401771 + 0.915740i \(0.631605\pi\)
\(684\) −5.60503 4.07230i −0.214314 0.155708i
\(685\) −5.56231 + 17.1190i −0.212525 + 0.654084i
\(686\) 10.1976 + 31.3849i 0.389345 + 1.19828i
\(687\) 5.66312 4.11450i 0.216061 0.156978i
\(688\) 35.0315 25.4518i 1.33556 0.970343i
\(689\) 6.42280 + 19.7673i 0.244689 + 0.753076i
\(690\) 0 0
\(691\) 8.09017 + 5.87785i 0.307765 + 0.223604i 0.730937 0.682445i \(-0.239083\pi\)
−0.423172 + 0.906049i \(0.639083\pi\)
\(692\) 10.3923 0.395056
\(693\) 0 0
\(694\) −21.0000 −0.797149
\(695\) 11.2101 + 8.14459i 0.425222 + 0.308942i
\(696\) 0 0
\(697\) −25.9574 79.8887i −0.983208 3.02600i
\(698\) −48.5410 + 35.2671i −1.83730 + 1.33488i
\(699\) −2.80252 + 2.03615i −0.106001 + 0.0770142i
\(700\) −0.535233 1.64728i −0.0202299 0.0622613i
\(701\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(702\) −24.2705 17.6336i −0.916031 0.665536i
\(703\) 27.7128 1.04521
\(704\) 0 0
\(705\) 9.00000 0.338960
\(706\) −33.6302 24.4338i −1.26569 0.919577i
\(707\) 0.927051 2.85317i 0.0348653 0.107304i
\(708\) 3.70820 + 11.4127i 0.139363 + 0.428915i
\(709\) −20.2254 + 14.6946i −0.759582 + 0.551868i −0.898782 0.438396i \(-0.855547\pi\)
0.139200 + 0.990264i \(0.455547\pi\)
\(710\) −16.8151 + 12.2169i −0.631060 + 0.458492i
\(711\) 6.42280 + 19.7673i 0.240874 + 0.741333i
\(712\) −1.60570 + 4.94183i −0.0601761 + 0.185203i
\(713\) 0 0
\(714\) −20.7846 −0.777844
\(715\) 0 0
\(716\) −18.0000 −0.672692
\(717\) 2.80252 + 2.03615i 0.104662 + 0.0760413i
\(718\) −1.85410 + 5.70634i −0.0691945 + 0.212959i
\(719\) 1.85410 + 5.70634i 0.0691463 + 0.212811i 0.979659 0.200672i \(-0.0643124\pi\)
−0.910512 + 0.413482i \(0.864312\pi\)
\(720\) 8.09017 5.87785i 0.301503 0.219055i
\(721\) −5.60503 + 4.07230i −0.208742 + 0.151660i
\(722\) −3.74663 11.5309i −0.139435 0.429137i
\(723\) 5.88756 18.1201i 0.218961 0.673892i
\(724\) −8.89919 6.46564i −0.330736 0.240294i
\(725\) 0 0
\(726\) 0 0
\(727\) 1.00000 0.0370879 0.0185440 0.999828i \(-0.494097\pi\)
0.0185440 + 0.999828i \(0.494097\pi\)
\(728\) −8.40755 6.10844i −0.311605 0.226394i
\(729\) 4.01722 12.3637i 0.148786 0.457916i
\(730\) 0 0
\(731\) 48.5410 35.2671i 1.79535 1.30440i
\(732\) 7.00629 5.09037i 0.258960 0.188145i
\(733\) −6.42280 19.7673i −0.237231 0.730123i −0.996818 0.0797166i \(-0.974598\pi\)
0.759586 0.650407i \(-0.225402\pi\)
\(734\) 9.09896 28.0037i 0.335849 1.03364i
\(735\) 3.23607 + 2.35114i 0.119364 + 0.0867231i
\(736\) 0 0
\(737\) 0 0
\(738\) −42.0000 −1.54604
\(739\) −2.80252 2.03615i −0.103092 0.0749009i 0.535045 0.844824i \(-0.320295\pi\)
−0.638137 + 0.769923i \(0.720295\pi\)
\(740\) 2.47214 7.60845i 0.0908775 0.279692i
\(741\) 3.70820 + 11.4127i 0.136224 + 0.419255i
\(742\) 14.5623 10.5801i 0.534599 0.388409i
\(743\) −4.20378 + 3.05422i −0.154222 + 0.112049i −0.662220 0.749309i \(-0.730386\pi\)
0.507998 + 0.861358i \(0.330386\pi\)
\(744\) −4.28187 13.1782i −0.156981 0.483137i
\(745\) 5.88756 18.1201i 0.215704 0.663868i
\(746\) 19.4164 + 14.1068i 0.710885 + 0.516488i
\(747\) −6.92820 −0.253490
\(748\) 0 0
\(749\) −3.00000 −0.109618
\(750\) −1.40126 1.01807i −0.0511667 0.0371748i
\(751\) −4.32624 + 13.3148i −0.157867 + 0.485864i −0.998440 0.0558340i \(-0.982218\pi\)
0.840573 + 0.541698i \(0.182218\pi\)
\(752\) −13.9058 42.7975i −0.507091 1.56067i
\(753\) 0 0
\(754\) 0 0
\(755\) 6.42280 + 19.7673i 0.233750 + 0.719407i
\(756\) −2.67617 + 8.23639i −0.0973312 + 0.299555i
\(757\) 1.61803 + 1.17557i 0.0588084 + 0.0427268i 0.616801 0.787119i \(-0.288428\pi\)
−0.557993 + 0.829846i \(0.688428\pi\)
\(758\) −58.8897 −2.13897
\(759\) 0 0
\(760\) −6.00000 −0.217643
\(761\) −28.0252 20.3615i −1.01591 0.738103i −0.0504709 0.998726i \(-0.516072\pi\)
−0.965441 + 0.260623i \(0.916072\pi\)
\(762\) −0.927051 + 2.85317i −0.0335835 + 0.103359i
\(763\) −0.927051 2.85317i −0.0335615 0.103292i
\(764\) 4.85410 3.52671i 0.175615 0.127592i
\(765\) 11.2101 8.14459i 0.405301 0.294468i
\(766\) 12.8456 + 39.5347i 0.464130 + 1.42845i
\(767\) −12.8456 + 39.5347i −0.463828 + 1.42751i
\(768\) 15.3713 + 11.1679i 0.554665 + 0.402988i
\(769\) 27.7128 0.999350 0.499675 0.866213i \(-0.333453\pi\)
0.499675 + 0.866213i \(0.333453\pi\)
\(770\) 0 0
\(771\) −12.0000 −0.432169
\(772\) 2.80252 + 2.03615i 0.100865 + 0.0732826i
\(773\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(774\) −9.27051 28.5317i −0.333222 1.02555i
\(775\) 6.47214 4.70228i 0.232486 0.168911i
\(776\) −14.0126 + 10.1807i −0.503023 + 0.365467i
\(777\) −4.28187 13.1782i −0.153611 0.472766i
\(778\) 1.60570 4.94183i 0.0575671 0.177173i
\(779\) 33.9787 + 24.6870i 1.21741 + 0.884503i
\(780\) 3.46410 0.124035
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 6.18034 19.0211i 0.220726 0.679326i
\(785\) −1.23607 3.80423i −0.0441172 0.135779i
\(786\) −4.85410 + 3.52671i −0.173140 + 0.125794i
\(787\) 21.0189 15.2711i 0.749242 0.544356i −0.146350 0.989233i \(-0.546752\pi\)
0.895592 + 0.444877i \(0.146752\pi\)
\(788\) −3.21140 9.88367i −0.114401 0.352091i
\(789\) −7.49326 + 23.0619i −0.266767 + 0.821025i
\(790\) −14.5623 10.5801i −0.518104 0.376424i
\(791\) 10.3923 0.369508
\(792\) 0 0
\(793\) 30.0000 1.06533
\(794\) −28.0252 20.3615i −0.994576 0.722602i
\(795\) 1.85410 5.70634i 0.0657582 0.202383i
\(796\) −4.32624 13.3148i −0.153339 0.471930i
\(797\) 9.70820 7.05342i 0.343882 0.249845i −0.402416 0.915457i \(-0.631829\pi\)
0.746298 + 0.665612i \(0.231829\pi\)
\(798\) 8.40755 6.10844i 0.297624 0.216237i
\(799\) −19.2684 59.3020i −0.681667 2.09795i
\(800\) −1.60570 + 4.94183i −0.0567700 + 0.174720i
\(801\) 4.85410 + 3.52671i 0.171511 + 0.124610i
\(802\) 46.7654 1.65134
\(803\) 0 0
\(804\) 5.00000 0.176336
\(805\) 0 0
\(806\) −14.8328 + 45.6507i −0.522464 + 1.60798i
\(807\) 4.63525 + 14.2658i 0.163169 + 0.502182i
\(808\) −2.42705 + 1.76336i −0.0853834 + 0.0620346i
\(809\) 39.2352 28.5061i 1.37944 1.00222i 0.382505 0.923953i \(-0.375061\pi\)
0.996932 0.0782667i \(-0.0249386\pi\)
\(810\) −0.535233 1.64728i −0.0188062 0.0578795i
\(811\) 2.14093 6.58911i 0.0751783 0.231375i −0.906405 0.422410i \(-0.861184\pi\)
0.981583 + 0.191035i \(0.0611843\pi\)
\(812\) 0 0
\(813\) 13.8564 0.485965
\(814\) 0 0
\(815\) 19.0000 0.665541
\(816\) 28.0252 + 20.3615i 0.981077 + 0.712794i
\(817\) −9.27051 + 28.5317i −0.324334 + 0.998198i
\(818\) 2.78115 + 8.55951i 0.0972407 + 0.299276i
\(819\) −9.70820 + 7.05342i −0.339232 + 0.246467i
\(820\) 9.80881 7.12652i 0.342538 0.248869i
\(821\) 9.09896 + 28.0037i 0.317556 + 0.977337i 0.974690 + 0.223563i \(0.0717688\pi\)
−0.657134 + 0.753774i \(0.728231\pi\)
\(822\) −9.63420 + 29.6510i −0.336031 + 1.03420i
\(823\) −13.7533 9.99235i −0.479410 0.348311i 0.321688 0.946846i \(-0.395750\pi\)
−0.801097 + 0.598534i \(0.795750\pi\)
\(824\) 6.92820 0.241355
\(825\) 0 0
\(826\) 36.0000 1.25260
\(827\) −23.8214 17.3073i −0.828351 0.601832i 0.0907413 0.995875i \(-0.471076\pi\)
−0.919092 + 0.394042i \(0.871076\pi\)
\(828\) 0 0
\(829\) 8.96149 + 27.5806i 0.311246 + 0.957915i 0.977272 + 0.211987i \(0.0679936\pi\)
−0.666027 + 0.745928i \(0.732006\pi\)
\(830\) 4.85410 3.52671i 0.168488 0.122414i
\(831\) 8.40755 6.10844i 0.291655 0.211900i
\(832\) 1.07047 + 3.29456i 0.0371117 + 0.114218i
\(833\) 8.56373 26.3565i 0.296716 0.913197i
\(834\) 19.4164 + 14.1068i 0.672335 + 0.488480i
\(835\) 5.19615 0.179820
\(836\) 0 0
\(837\) −40.0000 −1.38260
\(838\) −25.2227 18.3253i −0.871302 0.633038i
\(839\) −12.9787 + 39.9444i −0.448075 + 1.37903i 0.431001 + 0.902351i \(0.358161\pi\)
−0.879076 + 0.476682i \(0.841839\pi\)
\(840\) 0.927051 + 2.85317i 0.0319863 + 0.0984437i
\(841\) 23.4615 17.0458i 0.809017 0.587785i
\(842\) 23.8214 17.3073i 0.820939 0.596447i
\(843\) 2.14093 + 6.58911i 0.0737376 + 0.226941i
\(844\) 0 0
\(845\) −0.809017 0.587785i −0.0278310 0.0202204i
\(846\) −31.1769 −1.07188
\(847\) 0 0
\(848\) −30.0000 −1.03020
\(849\) −4.20378 3.05422i −0.144273 0.104821i
\(850\) −3.70820 + 11.4127i −0.127190 + 0.391452i
\(851\) 0 0
\(852\) −9.70820 + 7.05342i −0.332598 + 0.241646i
\(853\) 28.0252 20.3615i 0.959564 0.697164i 0.00651423 0.999979i \(-0.497926\pi\)
0.953049 + 0.302815i \(0.0979264\pi\)
\(854\) −8.02850 24.7092i −0.274730 0.845530i
\(855\) −2.14093 + 6.58911i −0.0732183 + 0.225343i
\(856\) 2.42705 + 1.76336i 0.0829549 + 0.0602703i
\(857\) −10.3923 −0.354994 −0.177497 0.984121i \(-0.556800\pi\)
−0.177497 + 0.984121i \(0.556800\pi\)
\(858\) 0 0
\(859\) 14.0000 0.477674 0.238837 0.971060i \(-0.423234\pi\)
0.238837 + 0.971060i \(0.423234\pi\)
\(860\) 7.00629 + 5.09037i 0.238913 + 0.173580i
\(861\) 6.48936 19.9722i 0.221157 0.680650i
\(862\) 20.3951 + 62.7697i 0.694661 + 2.13795i
\(863\) −16.9894 + 12.3435i −0.578324 + 0.420177i −0.838120 0.545486i \(-0.816345\pi\)
0.259795 + 0.965664i \(0.416345\pi\)
\(864\) 21.0189 15.2711i 0.715077 0.519534i
\(865\) −3.21140 9.88367i −0.109191 0.336055i
\(866\) 17.1275 52.7129i 0.582015 1.79126i
\(867\) 25.0795 + 18.2213i 0.851745 + 0.618829i
\(868\) 13.8564 0.470317
\(869\) 0 0
\(870\) 0 0
\(871\) 14.0126 + 10.1807i 0.474798 + 0.344961i
\(872\) −0.927051 + 2.85317i −0.0313939 + 0.0966205i
\(873\) 6.18034 + 19.0211i 0.209173 + 0.643768i
\(874\) 0 0
\(875\) −1.40126 + 1.01807i −0.0473712 + 0.0344172i
\(876\) 0 0
\(877\) −8.56373 + 26.3565i −0.289177 + 0.889994i 0.695939 + 0.718101i \(0.254988\pi\)
−0.985116 + 0.171893i \(0.945012\pi\)
\(878\) 38.8328 + 28.2137i 1.31054 + 0.952166i
\(879\) 6.92820 0.233682
\(880\) 0 0
\(881\) −21.0000 −0.707508 −0.353754 0.935339i \(-0.615095\pi\)
−0.353754 + 0.935339i \(0.615095\pi\)
\(882\) −11.2101 8.14459i −0.377463 0.274243i
\(883\) −17.3050 + 53.2592i −0.582358 + 1.79231i 0.0272727 + 0.999628i \(0.491318\pi\)
−0.609631 + 0.792686i \(0.708682\pi\)
\(884\) −7.41641 22.8254i −0.249441 0.767700i
\(885\) 9.70820 7.05342i 0.326338 0.237098i
\(886\) 21.0189 15.2711i 0.706143 0.513043i
\(887\) −10.1694 31.2983i −0.341456 1.05089i −0.963454 0.267875i \(-0.913679\pi\)
0.621998 0.783019i \(-0.286321\pi\)
\(888\) −4.28187 + 13.1782i −0.143690 + 0.442232i
\(889\) 2.42705 + 1.76336i 0.0814007 + 0.0591411i
\(890\) −5.19615 −0.174175
\(891\) 0 0
\(892\) −19.0000 −0.636167
\(893\) 25.2227 + 18.3253i 0.844044 + 0.613234i
\(894\) 10.1976 31.3849i 0.341057 1.04967i
\(895\) 5.56231 + 17.1190i 0.185927 + 0.572226i
\(896\) 16.9894 12.3435i 0.567575 0.412367i
\(897\) 0 0
\(898\) −8.02850 24.7092i −0.267914 0.824556i
\(899\) 0 0
\(900\) 1.61803 + 1.17557i 0.0539345 + 0.0391857i
\(901\) −41.5692 −1.38487
\(902\) 0 0
\(903\) 15.0000 0.499169
\(904\) −8.40755 6.10844i −0.279631 0.203164i
\(905\) −3.39919 + 10.4616i −0.112993 + 0.347756i
\(906\) 11.1246 + 34.2380i 0.369590 + 1.13748i
\(907\) −13.7533 + 9.99235i −0.456670 + 0.331791i −0.792224 0.610231i \(-0.791077\pi\)
0.335553 + 0.942021i \(0.391077\pi\)
\(908\) −15.4138 + 11.1988i −0.511526 + 0.371646i
\(909\) 1.07047 + 3.29456i 0.0355051 + 0.109274i
\(910\) 3.21140 9.88367i 0.106457 0.327640i
\(911\) −4.85410 3.52671i −0.160824 0.116845i 0.504463 0.863433i \(-0.331691\pi\)
−0.665286 + 0.746588i \(0.731691\pi\)
\(912\) −17.3205 −0.573539
\(913\) 0 0
\(914\) 36.0000 1.19077
\(915\) −7.00629 5.09037i −0.231621 0.168282i
\(916\) 2.16312 6.65740i 0.0714715 0.219967i
\(917\) 1.85410 + 5.70634i 0.0612278 + 0.188440i
\(918\) 48.5410 35.2671i 1.60209 1.16399i
\(919\) −30.8277 + 22.3976i −1.01691 + 0.738830i −0.965647 0.259856i \(-0.916325\pi\)
−0.0512641 + 0.998685i \(0.516325\pi\)
\(920\) 0 0
\(921\) 3.21140 9.88367i 0.105819 0.325678i
\(922\) 16.9894 + 12.3435i 0.559515 + 0.406511i
\(923\) −41.5692 −1.36827
\(924\) 0 0
\(925\) −8.00000 −0.263038
\(926\) −57.4516 41.7410i −1.88798 1.37170i
\(927\) 2.47214 7.60845i 0.0811956 0.249894i
\(928\) 0 0
\(929\) −14.5623 + 10.5801i −0.477774 + 0.347123i −0.800463 0.599382i \(-0.795413\pi\)
0.322689 + 0.946505i \(0.395413\pi\)
\(930\) 11.2101 8.14459i 0.367593 0.267072i
\(931\) 4.28187 + 13.1782i 0.140332 + 0.431899i
\(932\) −1.07047 + 3.29456i −0.0350643 + 0.107917i
\(933\) −4.85410 3.52671i −0.158916 0.115459i
\(934\) 5.19615 0.170023
\(935\) 0 0
\(936\) 12.0000 0.392232
\(937\) 19.6176 + 14.2530i 0.640880 + 0.465626i 0.860152 0.510037i \(-0.170368\pi\)
−0.219273 + 0.975664i \(0.570368\pi\)
\(938\) 4.63525 14.2658i 0.151346 0.465796i
\(939\) −3.09017 9.51057i −0.100844 0.310366i
\(940\) 7.28115 5.29007i 0.237485 0.172543i
\(941\) 40.6365 29.5241i 1.32471 0.962460i 0.324851 0.945765i \(-0.394686\pi\)
0.999861 0.0166945i \(-0.00531427\pi\)
\(942\) −2.14093 6.58911i −0.0697554 0.214685i
\(943\) 0 0
\(944\) −48.5410 35.2671i −1.57988 1.14785i
\(945\) 8.66025 0.281718
\(946\) 0 0
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) −8.40755 6.10844i −0.273065 0.198393i
\(949\) 0 0
\(950\) −1.85410 5.70634i −0.0601550 0.185138i
\(951\) −4.85410 + 3.52671i −0.157405 + 0.114361i
\(952\) 16.8151 12.2169i 0.544981 0.395952i
\(953\) 17.1275 + 52.7129i 0.554813 + 1.70754i 0.696437 + 0.717618i \(0.254768\pi\)
−0.141624 + 0.989920i \(0.545232\pi\)
\(954\) −6.42280 + 19.7673i −0.207946 + 0.639991i
\(955\) −4.85410 3.52671i −0.157075 0.114122i
\(956\) 3.46410 0.112037
\(957\) 0 0
\(958\) 18.0000 0.581554
\(959\) 25.2227 + 18.3253i 0.814482 + 0.591756i
\(960\) 0.309017 0.951057i 0.00997348 0.0306952i
\(961\) 10.1976 + 31.3849i 0.328954 + 1.01242i
\(962\) 38.8328 28.2137i 1.25202 0.909646i
\(963\) 2.80252 2.03615i 0.0903099 0.0656139i
\(964\) −5.88756 18.1201i −0.189626 0.583608i
\(965\) 1.07047 3.29456i 0.0344595 0.106056i
\(966\) 0 0
\(967\) 38.1051 1.22538 0.612689 0.790324i \(-0.290088\pi\)
0.612689 + 0.790324i \(0.290088\pi\)
\(968\) 0 0
\(969\) −24.0000 −0.770991
\(970\) −14.0126 10.1807i −0.449917 0.326884i
\(971\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(972\) −4.94427 15.2169i −0.158588 0.488082i
\(973\) 19.4164 14.1068i 0.622461 0.452245i
\(974\) 28.0252 20.3615i 0.897984 0.652424i
\(975\) −1.07047 3.29456i −0.0342824 0.105510i
\(976\) −13.3808 + 41.1820i −0.428310 + 1.31820i
\(977\) 19.4164 + 14.1068i 0.621186 + 0.451318i 0.853336 0.521362i \(-0.174576\pi\)
−0.232150 + 0.972680i \(0.574576\pi\)
\(978\) 32.9090 1.05231
\(979\) 0 0
\(980\) 4.00000 0.127775
\(981\) 2.80252 + 2.03615i 0.0894775 + 0.0650092i
\(982\) 12.9787 39.9444i 0.414167 1.27468i
\(983\) −0.927051 2.85317i −0.0295683 0.0910020i 0.935183 0.354164i \(-0.115235\pi\)
−0.964752 + 0.263162i \(0.915235\pi\)
\(984\) −16.9894 + 12.3435i −0.541601 + 0.393496i
\(985\) −8.40755 + 6.10844i −0.267887 + 0.194631i
\(986\) 0 0
\(987\) 4.81710 14.8255i 0.153330 0.471901i
\(988\) 9.70820 + 7.05342i 0.308859 + 0.224399i
\(989\) 0 0
\(990\) 0 0
\(991\) −2.00000 −0.0635321 −0.0317660 0.999495i \(-0.510113\pi\)
−0.0317660 + 0.999495i \(0.510113\pi\)
\(992\) −33.6302 24.4338i −1.06776 0.775773i
\(993\) 10.5066 32.3359i 0.333416 1.02615i
\(994\) 11.1246 + 34.2380i 0.352851 + 1.08596i
\(995\) −11.3262 + 8.22899i −0.359066 + 0.260877i
\(996\) 2.80252 2.03615i 0.0888012 0.0645178i
\(997\) −13.9161 42.8292i −0.440726 1.35642i −0.887103 0.461571i \(-0.847286\pi\)
0.446377 0.894845i \(-0.352714\pi\)
\(998\) −20.3389 + 62.5966i −0.643815 + 1.98146i
\(999\) 32.3607 + 23.5114i 1.02385 + 0.743868i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.g.i.81.1 8
11.2 odd 10 inner 605.2.g.i.511.1 8
11.3 even 5 inner 605.2.g.i.366.1 8
11.4 even 5 inner 605.2.g.i.251.2 8
11.5 even 5 605.2.a.e.1.2 yes 2
11.6 odd 10 605.2.a.e.1.1 2
11.7 odd 10 inner 605.2.g.i.251.1 8
11.8 odd 10 inner 605.2.g.i.366.2 8
11.9 even 5 inner 605.2.g.i.511.2 8
11.10 odd 2 inner 605.2.g.i.81.2 8
33.5 odd 10 5445.2.a.u.1.1 2
33.17 even 10 5445.2.a.u.1.2 2
44.27 odd 10 9680.2.a.bu.1.2 2
44.39 even 10 9680.2.a.bu.1.1 2
55.39 odd 10 3025.2.a.l.1.2 2
55.49 even 10 3025.2.a.l.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
605.2.a.e.1.1 2 11.6 odd 10
605.2.a.e.1.2 yes 2 11.5 even 5
605.2.g.i.81.1 8 1.1 even 1 trivial
605.2.g.i.81.2 8 11.10 odd 2 inner
605.2.g.i.251.1 8 11.7 odd 10 inner
605.2.g.i.251.2 8 11.4 even 5 inner
605.2.g.i.366.1 8 11.3 even 5 inner
605.2.g.i.366.2 8 11.8 odd 10 inner
605.2.g.i.511.1 8 11.2 odd 10 inner
605.2.g.i.511.2 8 11.9 even 5 inner
3025.2.a.l.1.1 2 55.49 even 10
3025.2.a.l.1.2 2 55.39 odd 10
5445.2.a.u.1.1 2 33.5 odd 10
5445.2.a.u.1.2 2 33.17 even 10
9680.2.a.bu.1.1 2 44.39 even 10
9680.2.a.bu.1.2 2 44.27 odd 10