Properties

Label 605.2.g.i.366.2
Level $605$
Weight $2$
Character 605.366
Analytic conductor $4.831$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(81,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.g (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.324000000.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 9x^{4} + 27x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 366.2
Root \(-0.535233 - 1.64728i\) of defining polynomial
Character \(\chi\) \(=\) 605.366
Dual form 605.2.g.i.81.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.40126 - 1.01807i) q^{2} +(-0.309017 - 0.951057i) q^{3} +(0.309017 - 0.951057i) q^{4} +(0.809017 + 0.587785i) q^{5} +(-1.40126 - 1.01807i) q^{6} +(0.535233 - 1.64728i) q^{7} +(0.535233 + 1.64728i) q^{8} +(1.61803 - 1.17557i) q^{9} +O(q^{10})\) \(q+(1.40126 - 1.01807i) q^{2} +(-0.309017 - 0.951057i) q^{3} +(0.309017 - 0.951057i) q^{4} +(0.809017 + 0.587785i) q^{5} +(-1.40126 - 1.01807i) q^{6} +(0.535233 - 1.64728i) q^{7} +(0.535233 + 1.64728i) q^{8} +(1.61803 - 1.17557i) q^{9} +1.73205 q^{10} -1.00000 q^{12} +(2.80252 - 2.03615i) q^{13} +(-0.927051 - 2.85317i) q^{14} +(0.309017 - 0.951057i) q^{15} +(4.04508 + 2.93893i) q^{16} +(-5.60503 - 4.07230i) q^{17} +(1.07047 - 3.29456i) q^{18} +(1.07047 + 3.29456i) q^{19} +(0.809017 - 0.587785i) q^{20} -1.73205 q^{21} +(1.40126 - 1.01807i) q^{24} +(0.309017 + 0.951057i) q^{25} +(1.85410 - 5.70634i) q^{26} +(-4.04508 - 2.93893i) q^{27} +(-1.40126 - 1.01807i) q^{28} +(-0.535233 - 1.64728i) q^{30} +(6.47214 - 4.70228i) q^{31} +5.19615 q^{32} -12.0000 q^{34} +(1.40126 - 1.01807i) q^{35} +(-0.618034 - 1.90211i) q^{36} +(-2.47214 + 7.60845i) q^{37} +(4.85410 + 3.52671i) q^{38} +(-2.80252 - 2.03615i) q^{39} +(-0.535233 + 1.64728i) q^{40} +(-3.74663 - 11.5309i) q^{41} +(-2.42705 + 1.76336i) q^{42} -8.66025 q^{43} +2.00000 q^{45} +(2.78115 + 8.55951i) q^{47} +(1.54508 - 4.75528i) q^{48} +(3.23607 + 2.35114i) q^{49} +(1.40126 + 1.01807i) q^{50} +(-2.14093 + 6.58911i) q^{51} +(-1.07047 - 3.29456i) q^{52} +(-4.85410 + 3.52671i) q^{53} -8.66025 q^{54} +3.00000 q^{56} +(2.80252 - 2.03615i) q^{57} +(-3.70820 + 11.4127i) q^{59} +(-0.809017 - 0.587785i) q^{60} +(7.00629 + 5.09037i) q^{61} +(4.28187 - 13.1782i) q^{62} +(-1.07047 - 3.29456i) q^{63} +(-0.809017 + 0.587785i) q^{64} +3.46410 q^{65} -5.00000 q^{67} +(-5.60503 + 4.07230i) q^{68} +(0.927051 - 2.85317i) q^{70} +(9.70820 + 7.05342i) q^{71} +(2.80252 + 2.03615i) q^{72} +(4.28187 + 13.1782i) q^{74} +(0.809017 - 0.587785i) q^{75} +3.46410 q^{76} -6.00000 q^{78} +(-8.40755 + 6.10844i) q^{79} +(1.54508 + 4.75528i) q^{80} +(0.309017 - 0.951057i) q^{81} +(-16.9894 - 12.3435i) q^{82} +(2.80252 + 2.03615i) q^{83} +(-0.535233 + 1.64728i) q^{84} +(-2.14093 - 6.58911i) q^{85} +(-12.1353 + 8.81678i) q^{86} +3.00000 q^{89} +(2.80252 - 2.03615i) q^{90} +(-1.85410 - 5.70634i) q^{91} +(-6.47214 - 4.70228i) q^{93} +(12.6113 + 9.16267i) q^{94} +(-1.07047 + 3.29456i) q^{95} +(-1.60570 - 4.94183i) q^{96} +(8.09017 - 5.87785i) q^{97} +6.92820 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{3} - 2 q^{4} + 2 q^{5} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 2 q^{3} - 2 q^{4} + 2 q^{5} + 4 q^{9} - 8 q^{12} + 6 q^{14} - 2 q^{15} + 10 q^{16} + 2 q^{20} - 2 q^{25} - 12 q^{26} - 10 q^{27} + 16 q^{31} - 96 q^{34} + 4 q^{36} + 16 q^{37} + 12 q^{38} - 6 q^{42} + 16 q^{45} - 18 q^{47} - 10 q^{48} + 8 q^{49} - 12 q^{53} + 24 q^{56} + 24 q^{59} - 2 q^{60} - 2 q^{64} - 40 q^{67} - 6 q^{70} + 24 q^{71} + 2 q^{75} - 48 q^{78} - 10 q^{80} - 2 q^{81} - 42 q^{82} - 30 q^{86} + 24 q^{89} + 12 q^{91} - 16 q^{93} + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.40126 1.01807i 0.990839 0.719887i 0.0307347 0.999528i \(-0.490215\pi\)
0.960105 + 0.279641i \(0.0902153\pi\)
\(3\) −0.309017 0.951057i −0.178411 0.549093i 0.821362 0.570408i \(-0.193215\pi\)
−0.999773 + 0.0213149i \(0.993215\pi\)
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) 0.809017 + 0.587785i 0.361803 + 0.262866i
\(6\) −1.40126 1.01807i −0.572061 0.415627i
\(7\) 0.535233 1.64728i 0.202299 0.622613i −0.797514 0.603300i \(-0.793852\pi\)
0.999813 0.0193127i \(-0.00614781\pi\)
\(8\) 0.535233 + 1.64728i 0.189233 + 0.582401i
\(9\) 1.61803 1.17557i 0.539345 0.391857i
\(10\) 1.73205 0.547723
\(11\) 0 0
\(12\) −1.00000 −0.288675
\(13\) 2.80252 2.03615i 0.777278 0.564726i −0.126883 0.991918i \(-0.540497\pi\)
0.904161 + 0.427192i \(0.140497\pi\)
\(14\) −0.927051 2.85317i −0.247765 0.762542i
\(15\) 0.309017 0.951057i 0.0797878 0.245562i
\(16\) 4.04508 + 2.93893i 1.01127 + 0.734732i
\(17\) −5.60503 4.07230i −1.35942 0.987677i −0.998482 0.0550873i \(-0.982456\pi\)
−0.360939 0.932589i \(-0.617544\pi\)
\(18\) 1.07047 3.29456i 0.252311 0.776534i
\(19\) 1.07047 + 3.29456i 0.245582 + 0.755823i 0.995540 + 0.0943381i \(0.0300735\pi\)
−0.749958 + 0.661485i \(0.769927\pi\)
\(20\) 0.809017 0.587785i 0.180902 0.131433i
\(21\) −1.73205 −0.377964
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 1.40126 1.01807i 0.286031 0.207813i
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 1.85410 5.70634i 0.363619 1.11911i
\(27\) −4.04508 2.93893i −0.778477 0.565597i
\(28\) −1.40126 1.01807i −0.264813 0.192398i
\(29\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(30\) −0.535233 1.64728i −0.0977198 0.300750i
\(31\) 6.47214 4.70228i 1.16243 0.844555i 0.172347 0.985036i \(-0.444865\pi\)
0.990083 + 0.140482i \(0.0448651\pi\)
\(32\) 5.19615 0.918559
\(33\) 0 0
\(34\) −12.0000 −2.05798
\(35\) 1.40126 1.01807i 0.236856 0.172086i
\(36\) −0.618034 1.90211i −0.103006 0.317019i
\(37\) −2.47214 + 7.60845i −0.406417 + 1.25082i 0.513290 + 0.858215i \(0.328427\pi\)
−0.919707 + 0.392607i \(0.871573\pi\)
\(38\) 4.85410 + 3.52671i 0.787439 + 0.572108i
\(39\) −2.80252 2.03615i −0.448762 0.326045i
\(40\) −0.535233 + 1.64728i −0.0846278 + 0.260458i
\(41\) −3.74663 11.5309i −0.585126 1.80083i −0.598765 0.800924i \(-0.704342\pi\)
0.0136398 0.999907i \(-0.495658\pi\)
\(42\) −2.42705 + 1.76336i −0.374502 + 0.272092i
\(43\) −8.66025 −1.32068 −0.660338 0.750968i \(-0.729587\pi\)
−0.660338 + 0.750968i \(0.729587\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 0 0
\(47\) 2.78115 + 8.55951i 0.405673 + 1.24853i 0.920332 + 0.391138i \(0.127918\pi\)
−0.514659 + 0.857395i \(0.672082\pi\)
\(48\) 1.54508 4.75528i 0.223014 0.686366i
\(49\) 3.23607 + 2.35114i 0.462295 + 0.335877i
\(50\) 1.40126 + 1.01807i 0.198168 + 0.143977i
\(51\) −2.14093 + 6.58911i −0.299791 + 0.922660i
\(52\) −1.07047 3.29456i −0.148447 0.456873i
\(53\) −4.85410 + 3.52671i −0.666762 + 0.484431i −0.868940 0.494918i \(-0.835198\pi\)
0.202178 + 0.979349i \(0.435198\pi\)
\(54\) −8.66025 −1.17851
\(55\) 0 0
\(56\) 3.00000 0.400892
\(57\) 2.80252 2.03615i 0.371202 0.269694i
\(58\) 0 0
\(59\) −3.70820 + 11.4127i −0.482767 + 1.48580i 0.352422 + 0.935841i \(0.385358\pi\)
−0.835189 + 0.549963i \(0.814642\pi\)
\(60\) −0.809017 0.587785i −0.104444 0.0758827i
\(61\) 7.00629 + 5.09037i 0.897064 + 0.651755i 0.937710 0.347419i \(-0.112942\pi\)
−0.0406463 + 0.999174i \(0.512942\pi\)
\(62\) 4.28187 13.1782i 0.543797 1.67364i
\(63\) −1.07047 3.29456i −0.134866 0.415075i
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) 3.46410 0.429669
\(66\) 0 0
\(67\) −5.00000 −0.610847 −0.305424 0.952217i \(-0.598798\pi\)
−0.305424 + 0.952217i \(0.598798\pi\)
\(68\) −5.60503 + 4.07230i −0.679710 + 0.493838i
\(69\) 0 0
\(70\) 0.927051 2.85317i 0.110804 0.341019i
\(71\) 9.70820 + 7.05342i 1.15215 + 0.837087i 0.988766 0.149475i \(-0.0477583\pi\)
0.163386 + 0.986562i \(0.447758\pi\)
\(72\) 2.80252 + 2.03615i 0.330280 + 0.239962i
\(73\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(74\) 4.28187 + 13.1782i 0.497757 + 1.53194i
\(75\) 0.809017 0.587785i 0.0934172 0.0678716i
\(76\) 3.46410 0.397360
\(77\) 0 0
\(78\) −6.00000 −0.679366
\(79\) −8.40755 + 6.10844i −0.945923 + 0.687254i −0.949839 0.312739i \(-0.898754\pi\)
0.00391577 + 0.999992i \(0.498754\pi\)
\(80\) 1.54508 + 4.75528i 0.172746 + 0.531657i
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) −16.9894 12.3435i −1.87616 1.36311i
\(83\) 2.80252 + 2.03615i 0.307616 + 0.223496i 0.730873 0.682514i \(-0.239113\pi\)
−0.423257 + 0.906010i \(0.639113\pi\)
\(84\) −0.535233 + 1.64728i −0.0583987 + 0.179733i
\(85\) −2.14093 6.58911i −0.232217 0.714690i
\(86\) −12.1353 + 8.81678i −1.30858 + 0.950738i
\(87\) 0 0
\(88\) 0 0
\(89\) 3.00000 0.317999 0.159000 0.987279i \(-0.449173\pi\)
0.159000 + 0.987279i \(0.449173\pi\)
\(90\) 2.80252 2.03615i 0.295411 0.214629i
\(91\) −1.85410 5.70634i −0.194363 0.598187i
\(92\) 0 0
\(93\) −6.47214 4.70228i −0.671129 0.487604i
\(94\) 12.6113 + 9.16267i 1.30076 + 0.945057i
\(95\) −1.07047 + 3.29456i −0.109828 + 0.338014i
\(96\) −1.60570 4.94183i −0.163881 0.504374i
\(97\) 8.09017 5.87785i 0.821432 0.596806i −0.0956901 0.995411i \(-0.530506\pi\)
0.917122 + 0.398606i \(0.130506\pi\)
\(98\) 6.92820 0.699854
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −1.40126 + 1.01807i −0.139430 + 0.101302i −0.655314 0.755357i \(-0.727464\pi\)
0.515884 + 0.856659i \(0.327464\pi\)
\(102\) 3.70820 + 11.4127i 0.367167 + 1.13002i
\(103\) −1.23607 + 3.80423i −0.121793 + 0.374842i −0.993303 0.115536i \(-0.963141\pi\)
0.871510 + 0.490378i \(0.163141\pi\)
\(104\) 4.85410 + 3.52671i 0.475984 + 0.345823i
\(105\) −1.40126 1.01807i −0.136749 0.0993538i
\(106\) −3.21140 + 9.88367i −0.311919 + 0.959987i
\(107\) −0.535233 1.64728i −0.0517429 0.159248i 0.921846 0.387556i \(-0.126681\pi\)
−0.973589 + 0.228308i \(0.926681\pi\)
\(108\) −4.04508 + 2.93893i −0.389238 + 0.282798i
\(109\) −1.73205 −0.165900 −0.0829502 0.996554i \(-0.526434\pi\)
−0.0829502 + 0.996554i \(0.526434\pi\)
\(110\) 0 0
\(111\) 8.00000 0.759326
\(112\) 7.00629 5.09037i 0.662032 0.480995i
\(113\) −1.85410 5.70634i −0.174419 0.536807i 0.825187 0.564859i \(-0.191070\pi\)
−0.999606 + 0.0280521i \(0.991070\pi\)
\(114\) 1.85410 5.70634i 0.173653 0.534448i
\(115\) 0 0
\(116\) 0 0
\(117\) 2.14093 6.58911i 0.197929 0.609164i
\(118\) 6.42280 + 19.7673i 0.591266 + 1.81973i
\(119\) −9.70820 + 7.05342i −0.889950 + 0.646586i
\(120\) 1.73205 0.158114
\(121\) 0 0
\(122\) 15.0000 1.35804
\(123\) −9.80881 + 7.12652i −0.884431 + 0.642576i
\(124\) −2.47214 7.60845i −0.222004 0.683259i
\(125\) −0.309017 + 0.951057i −0.0276393 + 0.0850651i
\(126\) −4.85410 3.52671i −0.432438 0.314184i
\(127\) 1.40126 + 1.01807i 0.124342 + 0.0903395i 0.648218 0.761455i \(-0.275515\pi\)
−0.523876 + 0.851794i \(0.675515\pi\)
\(128\) −3.74663 + 11.5309i −0.331159 + 1.01920i
\(129\) 2.67617 + 8.23639i 0.235623 + 0.725174i
\(130\) 4.85410 3.52671i 0.425733 0.309313i
\(131\) 3.46410 0.302660 0.151330 0.988483i \(-0.451644\pi\)
0.151330 + 0.988483i \(0.451644\pi\)
\(132\) 0 0
\(133\) 6.00000 0.520266
\(134\) −7.00629 + 5.09037i −0.605252 + 0.439741i
\(135\) −1.54508 4.75528i −0.132980 0.409270i
\(136\) 3.70820 11.4127i 0.317976 0.978629i
\(137\) −14.5623 10.5801i −1.24414 0.903922i −0.246275 0.969200i \(-0.579207\pi\)
−0.997867 + 0.0652782i \(0.979207\pi\)
\(138\) 0 0
\(139\) −4.28187 + 13.1782i −0.363183 + 1.11776i 0.587928 + 0.808913i \(0.299944\pi\)
−0.951111 + 0.308849i \(0.900056\pi\)
\(140\) −0.535233 1.64728i −0.0452355 0.139220i
\(141\) 7.28115 5.29007i 0.613184 0.445504i
\(142\) 20.7846 1.74421
\(143\) 0 0
\(144\) 10.0000 0.833333
\(145\) 0 0
\(146\) 0 0
\(147\) 1.23607 3.80423i 0.101949 0.313767i
\(148\) 6.47214 + 4.70228i 0.532006 + 0.386525i
\(149\) −15.4138 11.1988i −1.26275 0.917443i −0.263862 0.964560i \(-0.584996\pi\)
−0.998889 + 0.0471179i \(0.984996\pi\)
\(150\) 0.535233 1.64728i 0.0437016 0.134500i
\(151\) 6.42280 + 19.7673i 0.522680 + 1.60864i 0.768859 + 0.639419i \(0.220825\pi\)
−0.246179 + 0.969224i \(0.579175\pi\)
\(152\) −4.85410 + 3.52671i −0.393720 + 0.286054i
\(153\) −13.8564 −1.12022
\(154\) 0 0
\(155\) 8.00000 0.642575
\(156\) −2.80252 + 2.03615i −0.224381 + 0.163022i
\(157\) 1.23607 + 3.80423i 0.0986490 + 0.303610i 0.988187 0.153250i \(-0.0489740\pi\)
−0.889538 + 0.456860i \(0.848974\pi\)
\(158\) −5.56231 + 17.1190i −0.442513 + 1.36192i
\(159\) 4.85410 + 3.52671i 0.384955 + 0.279686i
\(160\) 4.20378 + 3.05422i 0.332338 + 0.241457i
\(161\) 0 0
\(162\) −0.535233 1.64728i −0.0420519 0.129422i
\(163\) 15.3713 11.1679i 1.20397 0.874739i 0.209305 0.977850i \(-0.432880\pi\)
0.994670 + 0.103111i \(0.0328798\pi\)
\(164\) −12.1244 −0.946753
\(165\) 0 0
\(166\) 6.00000 0.465690
\(167\) −4.20378 + 3.05422i −0.325298 + 0.236343i −0.738433 0.674327i \(-0.764434\pi\)
0.413135 + 0.910670i \(0.364434\pi\)
\(168\) −0.927051 2.85317i −0.0715235 0.220127i
\(169\) −0.309017 + 0.951057i −0.0237705 + 0.0731582i
\(170\) −9.70820 7.05342i −0.744585 0.540973i
\(171\) 5.60503 + 4.07230i 0.428628 + 0.311416i
\(172\) −2.67617 + 8.23639i −0.204056 + 0.628019i
\(173\) −3.21140 9.88367i −0.244158 0.751441i −0.995774 0.0918401i \(-0.970725\pi\)
0.751616 0.659601i \(-0.229275\pi\)
\(174\) 0 0
\(175\) 1.73205 0.130931
\(176\) 0 0
\(177\) 12.0000 0.901975
\(178\) 4.20378 3.05422i 0.315086 0.228924i
\(179\) −5.56231 17.1190i −0.415746 1.27954i −0.911582 0.411119i \(-0.865138\pi\)
0.495835 0.868416i \(-0.334862\pi\)
\(180\) 0.618034 1.90211i 0.0460655 0.141775i
\(181\) −8.89919 6.46564i −0.661471 0.480587i 0.205688 0.978618i \(-0.434057\pi\)
−0.867160 + 0.498031i \(0.834057\pi\)
\(182\) −8.40755 6.10844i −0.623209 0.452788i
\(183\) 2.67617 8.23639i 0.197828 0.608852i
\(184\) 0 0
\(185\) −6.47214 + 4.70228i −0.475841 + 0.345719i
\(186\) −13.8564 −1.01600
\(187\) 0 0
\(188\) 9.00000 0.656392
\(189\) −7.00629 + 5.09037i −0.509633 + 0.370270i
\(190\) 1.85410 + 5.70634i 0.134511 + 0.413981i
\(191\) −1.85410 + 5.70634i −0.134158 + 0.412896i −0.995458 0.0952005i \(-0.969651\pi\)
0.861300 + 0.508097i \(0.169651\pi\)
\(192\) 0.809017 + 0.587785i 0.0583858 + 0.0424197i
\(193\) −2.80252 2.03615i −0.201730 0.146565i 0.482334 0.875987i \(-0.339789\pi\)
−0.684064 + 0.729422i \(0.739789\pi\)
\(194\) 5.35233 16.4728i 0.384275 1.18268i
\(195\) −1.07047 3.29456i −0.0766577 0.235928i
\(196\) 3.23607 2.35114i 0.231148 0.167939i
\(197\) 10.3923 0.740421 0.370211 0.928948i \(-0.379286\pi\)
0.370211 + 0.928948i \(0.379286\pi\)
\(198\) 0 0
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) −1.40126 + 1.01807i −0.0990839 + 0.0719887i
\(201\) 1.54508 + 4.75528i 0.108982 + 0.335412i
\(202\) −0.927051 + 2.85317i −0.0652271 + 0.200748i
\(203\) 0 0
\(204\) 5.60503 + 4.07230i 0.392431 + 0.285118i
\(205\) 3.74663 11.5309i 0.261676 0.805356i
\(206\) 2.14093 + 6.58911i 0.149166 + 0.459085i
\(207\) 0 0
\(208\) 17.3205 1.20096
\(209\) 0 0
\(210\) −3.00000 −0.207020
\(211\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(212\) 1.85410 + 5.70634i 0.127340 + 0.391913i
\(213\) 3.70820 11.4127i 0.254082 0.781984i
\(214\) −2.42705 1.76336i −0.165910 0.120541i
\(215\) −7.00629 5.09037i −0.477825 0.347160i
\(216\) 2.67617 8.23639i 0.182090 0.560415i
\(217\) −4.28187 13.1782i −0.290672 0.894596i
\(218\) −2.42705 + 1.76336i −0.164381 + 0.119430i
\(219\) 0 0
\(220\) 0 0
\(221\) −24.0000 −1.61441
\(222\) 11.2101 8.14459i 0.752371 0.546629i
\(223\) −5.87132 18.0701i −0.393173 1.21006i −0.930375 0.366608i \(-0.880519\pi\)
0.537203 0.843453i \(-0.319481\pi\)
\(224\) 2.78115 8.55951i 0.185824 0.571906i
\(225\) 1.61803 + 1.17557i 0.107869 + 0.0783714i
\(226\) −8.40755 6.10844i −0.559262 0.406328i
\(227\) −5.88756 + 18.1201i −0.390771 + 1.20267i 0.541435 + 0.840743i \(0.317881\pi\)
−0.932206 + 0.361928i \(0.882119\pi\)
\(228\) −1.07047 3.29456i −0.0708934 0.218187i
\(229\) −5.66312 + 4.11450i −0.374229 + 0.271894i −0.758963 0.651134i \(-0.774293\pi\)
0.384733 + 0.923028i \(0.374293\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.80252 + 2.03615i −0.183599 + 0.133392i −0.675788 0.737096i \(-0.736197\pi\)
0.492189 + 0.870488i \(0.336197\pi\)
\(234\) −3.70820 11.4127i −0.242413 0.746070i
\(235\) −2.78115 + 8.55951i −0.181422 + 0.558361i
\(236\) 9.70820 + 7.05342i 0.631950 + 0.459139i
\(237\) 8.40755 + 6.10844i 0.546129 + 0.396786i
\(238\) −6.42280 + 19.7673i −0.416328 + 1.28133i
\(239\) −1.07047 3.29456i −0.0692427 0.213107i 0.910447 0.413625i \(-0.135738\pi\)
−0.979690 + 0.200518i \(0.935738\pi\)
\(240\) 4.04508 2.93893i 0.261109 0.189707i
\(241\) 19.0526 1.22728 0.613642 0.789585i \(-0.289704\pi\)
0.613642 + 0.789585i \(0.289704\pi\)
\(242\) 0 0
\(243\) −16.0000 −1.02640
\(244\) 7.00629 5.09037i 0.448532 0.325878i
\(245\) 1.23607 + 3.80423i 0.0789695 + 0.243043i
\(246\) −6.48936 + 19.9722i −0.413746 + 1.27338i
\(247\) 9.70820 + 7.05342i 0.617718 + 0.448799i
\(248\) 11.2101 + 8.14459i 0.711840 + 0.517182i
\(249\) 1.07047 3.29456i 0.0678380 0.208784i
\(250\) 0.535233 + 1.64728i 0.0338511 + 0.104183i
\(251\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(252\) −3.46410 −0.218218
\(253\) 0 0
\(254\) 3.00000 0.188237
\(255\) −5.60503 + 4.07230i −0.351001 + 0.255017i
\(256\) 5.87132 + 18.0701i 0.366958 + 1.12938i
\(257\) 3.70820 11.4127i 0.231311 0.711903i −0.766278 0.642509i \(-0.777893\pi\)
0.997589 0.0693940i \(-0.0221066\pi\)
\(258\) 12.1353 + 8.81678i 0.755508 + 0.548909i
\(259\) 11.2101 + 8.14459i 0.696560 + 0.506080i
\(260\) 1.07047 3.29456i 0.0663875 0.204320i
\(261\) 0 0
\(262\) 4.85410 3.52671i 0.299887 0.217881i
\(263\) −24.2487 −1.49524 −0.747620 0.664127i \(-0.768803\pi\)
−0.747620 + 0.664127i \(0.768803\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 8.40755 6.10844i 0.515500 0.374533i
\(267\) −0.927051 2.85317i −0.0567346 0.174611i
\(268\) −1.54508 + 4.75528i −0.0943811 + 0.290475i
\(269\) 12.1353 + 8.81678i 0.739900 + 0.537568i 0.892680 0.450692i \(-0.148823\pi\)
−0.152780 + 0.988260i \(0.548823\pi\)
\(270\) −7.00629 5.09037i −0.426389 0.309790i
\(271\) 4.28187 13.1782i 0.260105 0.800520i −0.732676 0.680578i \(-0.761729\pi\)
0.992781 0.119943i \(-0.0382711\pi\)
\(272\) −10.7047 32.9456i −0.649066 1.99762i
\(273\) −4.85410 + 3.52671i −0.293784 + 0.213446i
\(274\) −31.1769 −1.88347
\(275\) 0 0
\(276\) 0 0
\(277\) 8.40755 6.10844i 0.505161 0.367021i −0.305824 0.952088i \(-0.598932\pi\)
0.810985 + 0.585067i \(0.198932\pi\)
\(278\) 7.41641 + 22.8254i 0.444807 + 1.36897i
\(279\) 4.94427 15.2169i 0.296006 0.911012i
\(280\) 2.42705 + 1.76336i 0.145044 + 0.105381i
\(281\) −5.60503 4.07230i −0.334368 0.242933i 0.407914 0.913021i \(-0.366256\pi\)
−0.742282 + 0.670088i \(0.766256\pi\)
\(282\) 4.81710 14.8255i 0.286854 0.882846i
\(283\) 1.60570 + 4.94183i 0.0954489 + 0.293762i 0.987370 0.158429i \(-0.0506428\pi\)
−0.891921 + 0.452190i \(0.850643\pi\)
\(284\) 9.70820 7.05342i 0.576076 0.418544i
\(285\) 3.46410 0.205196
\(286\) 0 0
\(287\) −21.0000 −1.23959
\(288\) 8.40755 6.10844i 0.495420 0.359943i
\(289\) 9.57953 + 29.4828i 0.563502 + 1.73428i
\(290\) 0 0
\(291\) −8.09017 5.87785i −0.474254 0.344566i
\(292\) 0 0
\(293\) 2.14093 6.58911i 0.125075 0.384940i −0.868840 0.495093i \(-0.835134\pi\)
0.993915 + 0.110153i \(0.0351340\pi\)
\(294\) −2.14093 6.58911i −0.124862 0.384285i
\(295\) −9.70820 + 7.05342i −0.565233 + 0.410666i
\(296\) −13.8564 −0.805387
\(297\) 0 0
\(298\) −33.0000 −1.91164
\(299\) 0 0
\(300\) −0.309017 0.951057i −0.0178411 0.0549093i
\(301\) −4.63525 + 14.2658i −0.267172 + 0.822270i
\(302\) 29.1246 + 21.1603i 1.67593 + 1.21764i
\(303\) 1.40126 + 1.01807i 0.0805002 + 0.0584868i
\(304\) −5.35233 + 16.4728i −0.306977 + 0.944779i
\(305\) 2.67617 + 8.23639i 0.153237 + 0.471614i
\(306\) −19.4164 + 14.1068i −1.10996 + 0.806435i
\(307\) 10.3923 0.593120 0.296560 0.955014i \(-0.404160\pi\)
0.296560 + 0.955014i \(0.404160\pi\)
\(308\) 0 0
\(309\) 4.00000 0.227552
\(310\) 11.2101 8.14459i 0.636689 0.462582i
\(311\) −1.85410 5.70634i −0.105136 0.323577i 0.884626 0.466301i \(-0.154414\pi\)
−0.989762 + 0.142724i \(0.954414\pi\)
\(312\) 1.85410 5.70634i 0.104968 0.323058i
\(313\) −8.09017 5.87785i −0.457283 0.332236i 0.335181 0.942154i \(-0.391202\pi\)
−0.792465 + 0.609918i \(0.791202\pi\)
\(314\) 5.60503 + 4.07230i 0.316310 + 0.229813i
\(315\) 1.07047 3.29456i 0.0603139 0.185627i
\(316\) 3.21140 + 9.88367i 0.180655 + 0.556000i
\(317\) 4.85410 3.52671i 0.272634 0.198080i −0.443064 0.896490i \(-0.646109\pi\)
0.715698 + 0.698410i \(0.246109\pi\)
\(318\) 10.3923 0.582772
\(319\) 0 0
\(320\) −1.00000 −0.0559017
\(321\) −1.40126 + 1.01807i −0.0782106 + 0.0568233i
\(322\) 0 0
\(323\) 7.41641 22.8254i 0.412660 1.27004i
\(324\) −0.809017 0.587785i −0.0449454 0.0326547i
\(325\) 2.80252 + 2.03615i 0.155456 + 0.112945i
\(326\) 10.1694 31.2983i 0.563233 1.73345i
\(327\) 0.535233 + 1.64728i 0.0295985 + 0.0910947i
\(328\) 16.9894 12.3435i 0.938080 0.681555i
\(329\) 15.5885 0.859419
\(330\) 0 0
\(331\) −34.0000 −1.86881 −0.934405 0.356214i \(-0.884068\pi\)
−0.934405 + 0.356214i \(0.884068\pi\)
\(332\) 2.80252 2.03615i 0.153808 0.111748i
\(333\) 4.94427 + 15.2169i 0.270944 + 0.833881i
\(334\) −2.78115 + 8.55951i −0.152178 + 0.468355i
\(335\) −4.04508 2.93893i −0.221007 0.160571i
\(336\) −7.00629 5.09037i −0.382225 0.277702i
\(337\) −3.21140 + 9.88367i −0.174936 + 0.538398i −0.999631 0.0271807i \(-0.991347\pi\)
0.824694 + 0.565578i \(0.191347\pi\)
\(338\) 0.535233 + 1.64728i 0.0291128 + 0.0896001i
\(339\) −4.85410 + 3.52671i −0.263639 + 0.191545i
\(340\) −6.92820 −0.375735
\(341\) 0 0
\(342\) 12.0000 0.648886
\(343\) 15.4138 11.1988i 0.832269 0.604679i
\(344\) −4.63525 14.2658i −0.249916 0.769163i
\(345\) 0 0
\(346\) −14.5623 10.5801i −0.782874 0.568792i
\(347\) −9.80881 7.12652i −0.526564 0.382572i 0.292507 0.956263i \(-0.405511\pi\)
−0.819071 + 0.573692i \(0.805511\pi\)
\(348\) 0 0
\(349\) −10.7047 32.9456i −0.573007 1.76354i −0.642866 0.765979i \(-0.722255\pi\)
0.0698585 0.997557i \(-0.477745\pi\)
\(350\) 2.42705 1.76336i 0.129731 0.0942553i
\(351\) −17.3205 −0.924500
\(352\) 0 0
\(353\) 24.0000 1.27739 0.638696 0.769460i \(-0.279474\pi\)
0.638696 + 0.769460i \(0.279474\pi\)
\(354\) 16.8151 12.2169i 0.893713 0.649320i
\(355\) 3.70820 + 11.4127i 0.196811 + 0.605722i
\(356\) 0.927051 2.85317i 0.0491336 0.151218i
\(357\) 9.70820 + 7.05342i 0.513813 + 0.373307i
\(358\) −25.2227 18.3253i −1.33306 0.968524i
\(359\) 1.07047 3.29456i 0.0564970 0.173880i −0.918826 0.394663i \(-0.870861\pi\)
0.975323 + 0.220783i \(0.0708613\pi\)
\(360\) 1.07047 + 3.29456i 0.0564185 + 0.173638i
\(361\) 5.66312 4.11450i 0.298059 0.216552i
\(362\) −19.0526 −1.00138
\(363\) 0 0
\(364\) −6.00000 −0.314485
\(365\) 0 0
\(366\) −4.63525 14.2658i −0.242289 0.745688i
\(367\) 5.25329 16.1680i 0.274219 0.843961i −0.715205 0.698914i \(-0.753667\pi\)
0.989425 0.145046i \(-0.0463331\pi\)
\(368\) 0 0
\(369\) −19.6176 14.2530i −1.02125 0.741983i
\(370\) −4.28187 + 13.1782i −0.222604 + 0.685103i
\(371\) 3.21140 + 9.88367i 0.166728 + 0.513135i
\(372\) −6.47214 + 4.70228i −0.335565 + 0.243802i
\(373\) 13.8564 0.717458 0.358729 0.933442i \(-0.383210\pi\)
0.358729 + 0.933442i \(0.383210\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) −12.6113 + 9.16267i −0.650380 + 0.472528i
\(377\) 0 0
\(378\) −4.63525 + 14.2658i −0.238412 + 0.733756i
\(379\) 27.5066 + 19.9847i 1.41292 + 1.02655i 0.992890 + 0.119034i \(0.0379797\pi\)
0.420028 + 0.907511i \(0.362020\pi\)
\(380\) 2.80252 + 2.03615i 0.143766 + 0.104452i
\(381\) 0.535233 1.64728i 0.0274208 0.0843926i
\(382\) 3.21140 + 9.88367i 0.164309 + 0.505693i
\(383\) −19.4164 + 14.1068i −0.992132 + 0.720826i −0.960387 0.278670i \(-0.910106\pi\)
−0.0317451 + 0.999496i \(0.510106\pi\)
\(384\) 12.1244 0.618718
\(385\) 0 0
\(386\) −6.00000 −0.305392
\(387\) −14.0126 + 10.1807i −0.712300 + 0.517516i
\(388\) −3.09017 9.51057i −0.156880 0.482826i
\(389\) 0.927051 2.85317i 0.0470034 0.144661i −0.924800 0.380453i \(-0.875768\pi\)
0.971804 + 0.235791i \(0.0757682\pi\)
\(390\) −4.85410 3.52671i −0.245797 0.178582i
\(391\) 0 0
\(392\) −2.14093 + 6.58911i −0.108133 + 0.332800i
\(393\) −1.07047 3.29456i −0.0539979 0.166188i
\(394\) 14.5623 10.5801i 0.733638 0.533019i
\(395\) −10.3923 −0.522894
\(396\) 0 0
\(397\) 20.0000 1.00377 0.501886 0.864934i \(-0.332640\pi\)
0.501886 + 0.864934i \(0.332640\pi\)
\(398\) −19.6176 + 14.2530i −0.983342 + 0.714440i
\(399\) −1.85410 5.70634i −0.0928212 0.285674i
\(400\) −1.54508 + 4.75528i −0.0772542 + 0.237764i
\(401\) −21.8435 15.8702i −1.09081 0.792520i −0.111274 0.993790i \(-0.535493\pi\)
−0.979536 + 0.201270i \(0.935493\pi\)
\(402\) 7.00629 + 5.09037i 0.349442 + 0.253885i
\(403\) 8.56373 26.3565i 0.426590 1.31291i
\(404\) 0.535233 + 1.64728i 0.0266288 + 0.0819552i
\(405\) 0.809017 0.587785i 0.0402004 0.0292073i
\(406\) 0 0
\(407\) 0 0
\(408\) −12.0000 −0.594089
\(409\) 4.20378 3.05422i 0.207863 0.151022i −0.478983 0.877824i \(-0.658994\pi\)
0.686846 + 0.726803i \(0.258994\pi\)
\(410\) −6.48936 19.9722i −0.320486 0.986356i
\(411\) −5.56231 + 17.1190i −0.274368 + 0.844419i
\(412\) 3.23607 + 2.35114i 0.159430 + 0.115832i
\(413\) 16.8151 + 12.2169i 0.827417 + 0.601154i
\(414\) 0 0
\(415\) 1.07047 + 3.29456i 0.0525471 + 0.161723i
\(416\) 14.5623 10.5801i 0.713976 0.518734i
\(417\) 13.8564 0.678551
\(418\) 0 0
\(419\) 18.0000 0.879358 0.439679 0.898155i \(-0.355092\pi\)
0.439679 + 0.898155i \(0.355092\pi\)
\(420\) −1.40126 + 1.01807i −0.0683744 + 0.0496769i
\(421\) −5.25329 16.1680i −0.256030 0.787978i −0.993625 0.112735i \(-0.964039\pi\)
0.737595 0.675243i \(-0.235961\pi\)
\(422\) 0 0
\(423\) 14.5623 + 10.5801i 0.708044 + 0.514424i
\(424\) −8.40755 6.10844i −0.408307 0.296652i
\(425\) 2.14093 6.58911i 0.103850 0.319619i
\(426\) −6.42280 19.7673i −0.311186 0.957731i
\(427\) 12.1353 8.81678i 0.587266 0.426674i
\(428\) −1.73205 −0.0837218
\(429\) 0 0
\(430\) −15.0000 −0.723364
\(431\) 30.8277 22.3976i 1.48492 1.07886i 0.508987 0.860774i \(-0.330020\pi\)
0.975931 0.218081i \(-0.0699798\pi\)
\(432\) −7.72542 23.7764i −0.371690 1.14394i
\(433\) 9.88854 30.4338i 0.475213 1.46256i −0.370457 0.928850i \(-0.620799\pi\)
0.845670 0.533706i \(-0.179201\pi\)
\(434\) −19.4164 14.1068i −0.932017 0.677150i
\(435\) 0 0
\(436\) −0.535233 + 1.64728i −0.0256330 + 0.0788903i
\(437\) 0 0
\(438\) 0 0
\(439\) 27.7128 1.32266 0.661330 0.750095i \(-0.269992\pi\)
0.661330 + 0.750095i \(0.269992\pi\)
\(440\) 0 0
\(441\) 8.00000 0.380952
\(442\) −33.6302 + 24.4338i −1.59963 + 1.16220i
\(443\) −4.63525 14.2658i −0.220228 0.677791i −0.998741 0.0501629i \(-0.984026\pi\)
0.778513 0.627628i \(-0.215974\pi\)
\(444\) 2.47214 7.60845i 0.117322 0.361081i
\(445\) 2.42705 + 1.76336i 0.115053 + 0.0835911i
\(446\) −26.6239 19.3434i −1.26068 0.915937i
\(447\) −5.88756 + 18.1201i −0.278472 + 0.857049i
\(448\) 0.535233 + 1.64728i 0.0252874 + 0.0778266i
\(449\) 12.1353 8.81678i 0.572698 0.416090i −0.263386 0.964690i \(-0.584839\pi\)
0.836084 + 0.548601i \(0.184839\pi\)
\(450\) 3.46410 0.163299
\(451\) 0 0
\(452\) −6.00000 −0.282216
\(453\) 16.8151 12.2169i 0.790042 0.573999i
\(454\) 10.1976 + 31.3849i 0.478595 + 1.47296i
\(455\) 1.85410 5.70634i 0.0869216 0.267517i
\(456\) 4.85410 + 3.52671i 0.227314 + 0.165153i
\(457\) 16.8151 + 12.2169i 0.786577 + 0.571482i 0.906946 0.421247i \(-0.138408\pi\)
−0.120368 + 0.992729i \(0.538408\pi\)
\(458\) −3.74663 + 11.5309i −0.175069 + 0.538806i
\(459\) 10.7047 + 32.9456i 0.499651 + 1.53777i
\(460\) 0 0
\(461\) 12.1244 0.564688 0.282344 0.959313i \(-0.408888\pi\)
0.282344 + 0.959313i \(0.408888\pi\)
\(462\) 0 0
\(463\) 41.0000 1.90543 0.952716 0.303863i \(-0.0982765\pi\)
0.952716 + 0.303863i \(0.0982765\pi\)
\(464\) 0 0
\(465\) −2.47214 7.60845i −0.114643 0.352834i
\(466\) −1.85410 + 5.70634i −0.0858896 + 0.264341i
\(467\) −2.42705 1.76336i −0.112311 0.0815984i 0.530212 0.847865i \(-0.322112\pi\)
−0.642523 + 0.766267i \(0.722112\pi\)
\(468\) −5.60503 4.07230i −0.259093 0.188242i
\(469\) −2.67617 + 8.23639i −0.123574 + 0.380321i
\(470\) 4.81710 + 14.8255i 0.222196 + 0.683849i
\(471\) 3.23607 2.35114i 0.149110 0.108335i
\(472\) −20.7846 −0.956689
\(473\) 0 0
\(474\) 18.0000 0.826767
\(475\) −2.80252 + 2.03615i −0.128588 + 0.0934249i
\(476\) 3.70820 + 11.4127i 0.169965 + 0.523099i
\(477\) −3.70820 + 11.4127i −0.169787 + 0.522551i
\(478\) −4.85410 3.52671i −0.222021 0.161308i
\(479\) 8.40755 + 6.10844i 0.384151 + 0.279102i 0.763054 0.646334i \(-0.223699\pi\)
−0.378904 + 0.925436i \(0.623699\pi\)
\(480\) 1.60570 4.94183i 0.0732898 0.225563i
\(481\) 8.56373 + 26.3565i 0.390472 + 1.20175i
\(482\) 26.6976 19.3969i 1.21604 0.883505i
\(483\) 0 0
\(484\) 0 0
\(485\) 10.0000 0.454077
\(486\) −22.4201 + 16.2892i −1.01700 + 0.738892i
\(487\) −6.18034 19.0211i −0.280058 0.861930i −0.987837 0.155495i \(-0.950303\pi\)
0.707779 0.706434i \(-0.249697\pi\)
\(488\) −4.63525 + 14.2658i −0.209828 + 0.645785i
\(489\) −15.3713 11.1679i −0.695115 0.505031i
\(490\) 5.60503 + 4.07230i 0.253210 + 0.183968i
\(491\) −7.49326 + 23.0619i −0.338166 + 1.04077i 0.626975 + 0.779039i \(0.284293\pi\)
−0.965141 + 0.261729i \(0.915707\pi\)
\(492\) 3.74663 + 11.5309i 0.168911 + 0.519855i
\(493\) 0 0
\(494\) 20.7846 0.935144
\(495\) 0 0
\(496\) 40.0000 1.79605
\(497\) 16.8151 12.2169i 0.754260 0.548002i
\(498\) −1.85410 5.70634i −0.0830843 0.255707i
\(499\) −11.7426 + 36.1401i −0.525673 + 1.61786i 0.237308 + 0.971434i \(0.423735\pi\)
−0.762981 + 0.646421i \(0.776265\pi\)
\(500\) 0.809017 + 0.587785i 0.0361803 + 0.0262866i
\(501\) 4.20378 + 3.05422i 0.187811 + 0.136453i
\(502\) 0 0
\(503\) −2.67617 8.23639i −0.119324 0.367243i 0.873500 0.486824i \(-0.161845\pi\)
−0.992824 + 0.119582i \(0.961845\pi\)
\(504\) 4.85410 3.52671i 0.216219 0.157092i
\(505\) −1.73205 −0.0770752
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) 1.40126 1.01807i 0.0621708 0.0451697i
\(509\) 4.63525 + 14.2658i 0.205454 + 0.632323i 0.999694 + 0.0247189i \(0.00786908\pi\)
−0.794240 + 0.607604i \(0.792131\pi\)
\(510\) −3.70820 + 11.4127i −0.164202 + 0.505362i
\(511\) 0 0
\(512\) 7.00629 + 5.09037i 0.309637 + 0.224965i
\(513\) 5.35233 16.4728i 0.236311 0.727291i
\(514\) −6.42280 19.7673i −0.283297 0.871900i
\(515\) −3.23607 + 2.35114i −0.142598 + 0.103604i
\(516\) 8.66025 0.381246
\(517\) 0 0
\(518\) 24.0000 1.05450
\(519\) −8.40755 + 6.10844i −0.369051 + 0.268131i
\(520\) 1.85410 + 5.70634i 0.0813077 + 0.250240i
\(521\) 4.63525 14.2658i 0.203074 0.624998i −0.796713 0.604358i \(-0.793430\pi\)
0.999787 0.0206400i \(-0.00657038\pi\)
\(522\) 0 0
\(523\) −14.0126 10.1807i −0.612728 0.445173i 0.237646 0.971352i \(-0.423624\pi\)
−0.850374 + 0.526179i \(0.823624\pi\)
\(524\) 1.07047 3.29456i 0.0467635 0.143923i
\(525\) −0.535233 1.64728i −0.0233595 0.0718931i
\(526\) −33.9787 + 24.6870i −1.48154 + 1.07640i
\(527\) −55.4256 −2.41438
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) −8.40755 + 6.10844i −0.365201 + 0.265334i
\(531\) 7.41641 + 22.8254i 0.321845 + 0.990536i
\(532\) 1.85410 5.70634i 0.0803855 0.247401i
\(533\) −33.9787 24.6870i −1.47178 1.06931i
\(534\) −4.20378 3.05422i −0.181915 0.132169i
\(535\) 0.535233 1.64728i 0.0231401 0.0712180i
\(536\) −2.67617 8.23639i −0.115593 0.355758i
\(537\) −14.5623 + 10.5801i −0.628410 + 0.456567i
\(538\) 25.9808 1.12011
\(539\) 0 0
\(540\) −5.00000 −0.215166
\(541\) −4.20378 + 3.05422i −0.180734 + 0.131311i −0.674474 0.738299i \(-0.735630\pi\)
0.493740 + 0.869610i \(0.335630\pi\)
\(542\) −7.41641 22.8254i −0.318562 0.980433i
\(543\) −3.39919 + 10.4616i −0.145873 + 0.448951i
\(544\) −29.1246 21.1603i −1.24871 0.907239i
\(545\) −1.40126 1.01807i −0.0600233 0.0436095i
\(546\) −3.21140 + 9.88367i −0.137435 + 0.422982i
\(547\) 13.9161 + 42.8292i 0.595008 + 1.83125i 0.554687 + 0.832059i \(0.312838\pi\)
0.0403207 + 0.999187i \(0.487162\pi\)
\(548\) −14.5623 + 10.5801i −0.622071 + 0.451961i
\(549\) 17.3205 0.739221
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 5.56231 + 17.1190i 0.236533 + 0.727975i
\(554\) 5.56231 17.1190i 0.236320 0.727317i
\(555\) 6.47214 + 4.70228i 0.274727 + 0.199601i
\(556\) 11.2101 + 8.14459i 0.475413 + 0.345408i
\(557\) 2.14093 6.58911i 0.0907142 0.279190i −0.895399 0.445265i \(-0.853109\pi\)
0.986113 + 0.166075i \(0.0531095\pi\)
\(558\) −8.56373 26.3565i −0.362532 1.11576i
\(559\) −24.2705 + 17.6336i −1.02653 + 0.745820i
\(560\) 8.66025 0.365963
\(561\) 0 0
\(562\) −12.0000 −0.506189
\(563\) −12.6113 + 9.16267i −0.531504 + 0.386160i −0.820920 0.571043i \(-0.806539\pi\)
0.289416 + 0.957203i \(0.406539\pi\)
\(564\) −2.78115 8.55951i −0.117108 0.360420i
\(565\) 1.85410 5.70634i 0.0780027 0.240067i
\(566\) 7.28115 + 5.29007i 0.306050 + 0.222358i
\(567\) −1.40126 1.01807i −0.0588473 0.0427551i
\(568\) −6.42280 + 19.7673i −0.269495 + 0.829419i
\(569\) 0.535233 + 1.64728i 0.0224381 + 0.0690575i 0.961649 0.274285i \(-0.0884410\pi\)
−0.939210 + 0.343342i \(0.888441\pi\)
\(570\) 4.85410 3.52671i 0.203316 0.147718i
\(571\) 3.46410 0.144968 0.0724841 0.997370i \(-0.476907\pi\)
0.0724841 + 0.997370i \(0.476907\pi\)
\(572\) 0 0
\(573\) 6.00000 0.250654
\(574\) −29.4264 + 21.3796i −1.22824 + 0.892365i
\(575\) 0 0
\(576\) −0.618034 + 1.90211i −0.0257514 + 0.0792547i
\(577\) 16.1803 + 11.7557i 0.673596 + 0.489396i 0.871227 0.490880i \(-0.163325\pi\)
−0.197631 + 0.980277i \(0.563325\pi\)
\(578\) 43.4390 + 31.5603i 1.80682 + 1.31274i
\(579\) −1.07047 + 3.29456i −0.0444871 + 0.136917i
\(580\) 0 0
\(581\) 4.85410 3.52671i 0.201382 0.146313i
\(582\) −17.3205 −0.717958
\(583\) 0 0
\(584\) 0 0
\(585\) 5.60503 4.07230i 0.231740 0.168369i
\(586\) −3.70820 11.4127i −0.153184 0.471453i
\(587\) 6.48936 19.9722i 0.267844 0.824340i −0.723180 0.690660i \(-0.757320\pi\)
0.991024 0.133681i \(-0.0426797\pi\)
\(588\) −3.23607 2.35114i −0.133453 0.0969594i
\(589\) 22.4201 + 16.2892i 0.923806 + 0.671184i
\(590\) −6.42280 + 19.7673i −0.264422 + 0.813808i
\(591\) −3.21140 9.88367i −0.132099 0.406560i
\(592\) −32.3607 + 23.5114i −1.33002 + 0.966313i
\(593\) −24.2487 −0.995775 −0.497888 0.867242i \(-0.665891\pi\)
−0.497888 + 0.867242i \(0.665891\pi\)
\(594\) 0 0
\(595\) −12.0000 −0.491952
\(596\) −15.4138 + 11.1988i −0.631376 + 0.458721i
\(597\) 4.32624 + 13.3148i 0.177061 + 0.544938i
\(598\) 0 0
\(599\) −24.2705 17.6336i −0.991666 0.720488i −0.0313808 0.999508i \(-0.509990\pi\)
−0.960285 + 0.279020i \(0.909990\pi\)
\(600\) 1.40126 + 1.01807i 0.0572061 + 0.0415627i
\(601\) −6.42280 + 19.7673i −0.261991 + 0.806327i 0.730380 + 0.683041i \(0.239343\pi\)
−0.992371 + 0.123285i \(0.960657\pi\)
\(602\) 8.02850 + 24.7092i 0.327217 + 1.00707i
\(603\) −8.09017 + 5.87785i −0.329457 + 0.239365i
\(604\) 20.7846 0.845714
\(605\) 0 0
\(606\) 3.00000 0.121867
\(607\) −2.80252 + 2.03615i −0.113751 + 0.0826447i −0.643206 0.765693i \(-0.722396\pi\)
0.529456 + 0.848338i \(0.322396\pi\)
\(608\) 5.56231 + 17.1190i 0.225581 + 0.694268i
\(609\) 0 0
\(610\) 12.1353 + 8.81678i 0.491342 + 0.356981i
\(611\) 25.2227 + 18.3253i 1.02040 + 0.741364i
\(612\) −4.28187 + 13.1782i −0.173084 + 0.532698i
\(613\) 3.21140 + 9.88367i 0.129707 + 0.399198i 0.994729 0.102536i \(-0.0326957\pi\)
−0.865022 + 0.501734i \(0.832696\pi\)
\(614\) 14.5623 10.5801i 0.587687 0.426979i
\(615\) −12.1244 −0.488901
\(616\) 0 0
\(617\) −36.0000 −1.44931 −0.724653 0.689114i \(-0.758000\pi\)
−0.724653 + 0.689114i \(0.758000\pi\)
\(618\) 5.60503 4.07230i 0.225468 0.163812i
\(619\) 6.18034 + 19.0211i 0.248409 + 0.764524i 0.995057 + 0.0993047i \(0.0316619\pi\)
−0.746648 + 0.665219i \(0.768338\pi\)
\(620\) 2.47214 7.60845i 0.0992834 0.305563i
\(621\) 0 0
\(622\) −8.40755 6.10844i −0.337112 0.244926i
\(623\) 1.60570 4.94183i 0.0643310 0.197990i
\(624\) −5.35233 16.4728i −0.214265 0.659439i
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) −17.3205 −0.692267
\(627\) 0 0
\(628\) 4.00000 0.159617
\(629\) 44.8403 32.5784i 1.78790 1.29898i
\(630\) −1.85410 5.70634i −0.0738692 0.227346i
\(631\) 8.65248 26.6296i 0.344450 1.06011i −0.617428 0.786627i \(-0.711825\pi\)
0.961878 0.273480i \(-0.0881746\pi\)
\(632\) −14.5623 10.5801i −0.579257 0.420855i
\(633\) 0 0
\(634\) 3.21140 9.88367i 0.127541 0.392531i
\(635\) 0.535233 + 1.64728i 0.0212401 + 0.0653702i
\(636\) 4.85410 3.52671i 0.192478 0.139843i
\(637\) 13.8564 0.549011
\(638\) 0 0
\(639\) 24.0000 0.949425
\(640\) −9.80881 + 7.12652i −0.387727 + 0.281700i
\(641\) 9.27051 + 28.5317i 0.366163 + 1.12693i 0.949250 + 0.314524i \(0.101845\pi\)
−0.583086 + 0.812410i \(0.698155\pi\)
\(642\) −0.927051 + 2.85317i −0.0365878 + 0.112606i
\(643\) 25.0795 + 18.2213i 0.989040 + 0.718580i 0.959711 0.280990i \(-0.0906628\pi\)
0.0293293 + 0.999570i \(0.490663\pi\)
\(644\) 0 0
\(645\) −2.67617 + 8.23639i −0.105374 + 0.324308i
\(646\) −12.8456 39.5347i −0.505403 1.55547i
\(647\) −26.6976 + 19.3969i −1.04959 + 0.762571i −0.972134 0.234424i \(-0.924679\pi\)
−0.0774551 + 0.996996i \(0.524679\pi\)
\(648\) 1.73205 0.0680414
\(649\) 0 0
\(650\) 6.00000 0.235339
\(651\) −11.2101 + 8.14459i −0.439357 + 0.319212i
\(652\) −5.87132 18.0701i −0.229939 0.707679i
\(653\) −9.27051 + 28.5317i −0.362783 + 1.11653i 0.588575 + 0.808443i \(0.299689\pi\)
−0.951358 + 0.308089i \(0.900311\pi\)
\(654\) 2.42705 + 1.76336i 0.0949052 + 0.0689527i
\(655\) 2.80252 + 2.03615i 0.109503 + 0.0795589i
\(656\) 18.7332 57.6547i 0.731407 2.25104i
\(657\) 0 0
\(658\) 21.8435 15.8702i 0.851547 0.618685i
\(659\) −3.46410 −0.134942 −0.0674711 0.997721i \(-0.521493\pi\)
−0.0674711 + 0.997721i \(0.521493\pi\)
\(660\) 0 0
\(661\) 37.0000 1.43913 0.719567 0.694423i \(-0.244340\pi\)
0.719567 + 0.694423i \(0.244340\pi\)
\(662\) −47.6428 + 34.6145i −1.85169 + 1.34533i
\(663\) 7.41641 + 22.8254i 0.288029 + 0.886463i
\(664\) −1.85410 + 5.70634i −0.0719531 + 0.221449i
\(665\) 4.85410 + 3.52671i 0.188234 + 0.136760i
\(666\) 22.4201 + 16.2892i 0.868763 + 0.631193i
\(667\) 0 0
\(668\) 1.60570 + 4.94183i 0.0621264 + 0.191205i
\(669\) −15.3713 + 11.1679i −0.594290 + 0.431777i
\(670\) −8.66025 −0.334575
\(671\) 0 0
\(672\) −9.00000 −0.347183
\(673\) −16.8151 + 12.2169i −0.648175 + 0.470926i −0.862649 0.505803i \(-0.831196\pi\)
0.214474 + 0.976730i \(0.431196\pi\)
\(674\) 5.56231 + 17.1190i 0.214252 + 0.659400i
\(675\) 1.54508 4.75528i 0.0594703 0.183031i
\(676\) 0.809017 + 0.587785i 0.0311160 + 0.0226071i
\(677\) 22.4201 + 16.2892i 0.861676 + 0.626044i 0.928340 0.371731i \(-0.121236\pi\)
−0.0666645 + 0.997775i \(0.521236\pi\)
\(678\) −3.21140 + 9.88367i −0.123333 + 0.379580i
\(679\) −5.35233 16.4728i −0.205404 0.632167i
\(680\) 9.70820 7.05342i 0.372293 0.270486i
\(681\) 19.0526 0.730096
\(682\) 0 0
\(683\) −21.0000 −0.803543 −0.401771 0.915740i \(-0.631605\pi\)
−0.401771 + 0.915740i \(0.631605\pi\)
\(684\) 5.60503 4.07230i 0.214314 0.155708i
\(685\) −5.56231 17.1190i −0.212525 0.654084i
\(686\) 10.1976 31.3849i 0.389345 1.19828i
\(687\) 5.66312 + 4.11450i 0.216061 + 0.156978i
\(688\) −35.0315 25.4518i −1.33556 0.970343i
\(689\) −6.42280 + 19.7673i −0.244689 + 0.753076i
\(690\) 0 0
\(691\) 8.09017 5.87785i 0.307765 0.223604i −0.423172 0.906049i \(-0.639083\pi\)
0.730937 + 0.682445i \(0.239083\pi\)
\(692\) −10.3923 −0.395056
\(693\) 0 0
\(694\) −21.0000 −0.797149
\(695\) −11.2101 + 8.14459i −0.425222 + 0.308942i
\(696\) 0 0
\(697\) −25.9574 + 79.8887i −0.983208 + 3.02600i
\(698\) −48.5410 35.2671i −1.83730 1.33488i
\(699\) 2.80252 + 2.03615i 0.106001 + 0.0770142i
\(700\) 0.535233 1.64728i 0.0202299 0.0622613i
\(701\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(702\) −24.2705 + 17.6336i −0.916031 + 0.665536i
\(703\) −27.7128 −1.04521
\(704\) 0 0
\(705\) 9.00000 0.338960
\(706\) 33.6302 24.4338i 1.26569 0.919577i
\(707\) 0.927051 + 2.85317i 0.0348653 + 0.107304i
\(708\) 3.70820 11.4127i 0.139363 0.428915i
\(709\) −20.2254 14.6946i −0.759582 0.551868i 0.139200 0.990264i \(-0.455547\pi\)
−0.898782 + 0.438396i \(0.855547\pi\)
\(710\) 16.8151 + 12.2169i 0.631060 + 0.458492i
\(711\) −6.42280 + 19.7673i −0.240874 + 0.741333i
\(712\) 1.60570 + 4.94183i 0.0601761 + 0.185203i
\(713\) 0 0
\(714\) 20.7846 0.777844
\(715\) 0 0
\(716\) −18.0000 −0.672692
\(717\) −2.80252 + 2.03615i −0.104662 + 0.0760413i
\(718\) −1.85410 5.70634i −0.0691945 0.212959i
\(719\) 1.85410 5.70634i 0.0691463 0.212811i −0.910512 0.413482i \(-0.864312\pi\)
0.979659 + 0.200672i \(0.0643124\pi\)
\(720\) 8.09017 + 5.87785i 0.301503 + 0.219055i
\(721\) 5.60503 + 4.07230i 0.208742 + 0.151660i
\(722\) 3.74663 11.5309i 0.139435 0.429137i
\(723\) −5.88756 18.1201i −0.218961 0.673892i
\(724\) −8.89919 + 6.46564i −0.330736 + 0.240294i
\(725\) 0 0
\(726\) 0 0
\(727\) 1.00000 0.0370879 0.0185440 0.999828i \(-0.494097\pi\)
0.0185440 + 0.999828i \(0.494097\pi\)
\(728\) 8.40755 6.10844i 0.311605 0.226394i
\(729\) 4.01722 + 12.3637i 0.148786 + 0.457916i
\(730\) 0 0
\(731\) 48.5410 + 35.2671i 1.79535 + 1.30440i
\(732\) −7.00629 5.09037i −0.258960 0.188145i
\(733\) 6.42280 19.7673i 0.237231 0.730123i −0.759586 0.650407i \(-0.774598\pi\)
0.996818 0.0797166i \(-0.0254015\pi\)
\(734\) −9.09896 28.0037i −0.335849 1.03364i
\(735\) 3.23607 2.35114i 0.119364 0.0867231i
\(736\) 0 0
\(737\) 0 0
\(738\) −42.0000 −1.54604
\(739\) 2.80252 2.03615i 0.103092 0.0749009i −0.535045 0.844824i \(-0.679705\pi\)
0.638137 + 0.769923i \(0.279705\pi\)
\(740\) 2.47214 + 7.60845i 0.0908775 + 0.279692i
\(741\) 3.70820 11.4127i 0.136224 0.419255i
\(742\) 14.5623 + 10.5801i 0.534599 + 0.388409i
\(743\) 4.20378 + 3.05422i 0.154222 + 0.112049i 0.662220 0.749309i \(-0.269614\pi\)
−0.507998 + 0.861358i \(0.669614\pi\)
\(744\) 4.28187 13.1782i 0.156981 0.483137i
\(745\) −5.88756 18.1201i −0.215704 0.663868i
\(746\) 19.4164 14.1068i 0.710885 0.516488i
\(747\) 6.92820 0.253490
\(748\) 0 0
\(749\) −3.00000 −0.109618
\(750\) 1.40126 1.01807i 0.0511667 0.0371748i
\(751\) −4.32624 13.3148i −0.157867 0.485864i 0.840573 0.541698i \(-0.182218\pi\)
−0.998440 + 0.0558340i \(0.982218\pi\)
\(752\) −13.9058 + 42.7975i −0.507091 + 1.56067i
\(753\) 0 0
\(754\) 0 0
\(755\) −6.42280 + 19.7673i −0.233750 + 0.719407i
\(756\) 2.67617 + 8.23639i 0.0973312 + 0.299555i
\(757\) 1.61803 1.17557i 0.0588084 0.0427268i −0.557993 0.829846i \(-0.688428\pi\)
0.616801 + 0.787119i \(0.288428\pi\)
\(758\) 58.8897 2.13897
\(759\) 0 0
\(760\) −6.00000 −0.217643
\(761\) 28.0252 20.3615i 1.01591 0.738103i 0.0504709 0.998726i \(-0.483928\pi\)
0.965441 + 0.260623i \(0.0839278\pi\)
\(762\) −0.927051 2.85317i −0.0335835 0.103359i
\(763\) −0.927051 + 2.85317i −0.0335615 + 0.103292i
\(764\) 4.85410 + 3.52671i 0.175615 + 0.127592i
\(765\) −11.2101 8.14459i −0.405301 0.294468i
\(766\) −12.8456 + 39.5347i −0.464130 + 1.42845i
\(767\) 12.8456 + 39.5347i 0.463828 + 1.42751i
\(768\) 15.3713 11.1679i 0.554665 0.402988i
\(769\) −27.7128 −0.999350 −0.499675 0.866213i \(-0.666547\pi\)
−0.499675 + 0.866213i \(0.666547\pi\)
\(770\) 0 0
\(771\) −12.0000 −0.432169
\(772\) −2.80252 + 2.03615i −0.100865 + 0.0732826i
\(773\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(774\) −9.27051 + 28.5317i −0.333222 + 1.02555i
\(775\) 6.47214 + 4.70228i 0.232486 + 0.168911i
\(776\) 14.0126 + 10.1807i 0.503023 + 0.365467i
\(777\) 4.28187 13.1782i 0.153611 0.472766i
\(778\) −1.60570 4.94183i −0.0575671 0.177173i
\(779\) 33.9787 24.6870i 1.21741 0.884503i
\(780\) −3.46410 −0.124035
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 6.18034 + 19.0211i 0.220726 + 0.679326i
\(785\) −1.23607 + 3.80423i −0.0441172 + 0.135779i
\(786\) −4.85410 3.52671i −0.173140 0.125794i
\(787\) −21.0189 15.2711i −0.749242 0.544356i 0.146350 0.989233i \(-0.453248\pi\)
−0.895592 + 0.444877i \(0.853248\pi\)
\(788\) 3.21140 9.88367i 0.114401 0.352091i
\(789\) 7.49326 + 23.0619i 0.266767 + 0.821025i
\(790\) −14.5623 + 10.5801i −0.518104 + 0.376424i
\(791\) −10.3923 −0.369508
\(792\) 0 0
\(793\) 30.0000 1.06533
\(794\) 28.0252 20.3615i 0.994576 0.722602i
\(795\) 1.85410 + 5.70634i 0.0657582 + 0.202383i
\(796\) −4.32624 + 13.3148i −0.153339 + 0.471930i
\(797\) 9.70820 + 7.05342i 0.343882 + 0.249845i 0.746298 0.665612i \(-0.231829\pi\)
−0.402416 + 0.915457i \(0.631829\pi\)
\(798\) −8.40755 6.10844i −0.297624 0.216237i
\(799\) 19.2684 59.3020i 0.681667 2.09795i
\(800\) 1.60570 + 4.94183i 0.0567700 + 0.174720i
\(801\) 4.85410 3.52671i 0.171511 0.124610i
\(802\) −46.7654 −1.65134
\(803\) 0 0
\(804\) 5.00000 0.176336
\(805\) 0 0
\(806\) −14.8328 45.6507i −0.522464 1.60798i
\(807\) 4.63525 14.2658i 0.163169 0.502182i
\(808\) −2.42705 1.76336i −0.0853834 0.0620346i
\(809\) −39.2352 28.5061i −1.37944 1.00222i −0.996932 0.0782667i \(-0.975061\pi\)
−0.382505 0.923953i \(-0.624939\pi\)
\(810\) 0.535233 1.64728i 0.0188062 0.0578795i
\(811\) −2.14093 6.58911i −0.0751783 0.231375i 0.906405 0.422410i \(-0.138816\pi\)
−0.981583 + 0.191035i \(0.938816\pi\)
\(812\) 0 0
\(813\) −13.8564 −0.485965
\(814\) 0 0
\(815\) 19.0000 0.665541
\(816\) −28.0252 + 20.3615i −0.981077 + 0.712794i
\(817\) −9.27051 28.5317i −0.324334 0.998198i
\(818\) 2.78115 8.55951i 0.0972407 0.299276i
\(819\) −9.70820 7.05342i −0.339232 0.246467i
\(820\) −9.80881 7.12652i −0.342538 0.248869i
\(821\) −9.09896 + 28.0037i −0.317556 + 0.977337i 0.657134 + 0.753774i \(0.271769\pi\)
−0.974690 + 0.223563i \(0.928231\pi\)
\(822\) 9.63420 + 29.6510i 0.336031 + 1.03420i
\(823\) −13.7533 + 9.99235i −0.479410 + 0.348311i −0.801097 0.598534i \(-0.795750\pi\)
0.321688 + 0.946846i \(0.395750\pi\)
\(824\) −6.92820 −0.241355
\(825\) 0 0
\(826\) 36.0000 1.25260
\(827\) 23.8214 17.3073i 0.828351 0.601832i −0.0907413 0.995875i \(-0.528924\pi\)
0.919092 + 0.394042i \(0.128924\pi\)
\(828\) 0 0
\(829\) 8.96149 27.5806i 0.311246 0.957915i −0.666027 0.745928i \(-0.732006\pi\)
0.977272 0.211987i \(-0.0679936\pi\)
\(830\) 4.85410 + 3.52671i 0.168488 + 0.122414i
\(831\) −8.40755 6.10844i −0.291655 0.211900i
\(832\) −1.07047 + 3.29456i −0.0371117 + 0.114218i
\(833\) −8.56373 26.3565i −0.296716 0.913197i
\(834\) 19.4164 14.1068i 0.672335 0.488480i
\(835\) −5.19615 −0.179820
\(836\) 0 0
\(837\) −40.0000 −1.38260
\(838\) 25.2227 18.3253i 0.871302 0.633038i
\(839\) −12.9787 39.9444i −0.448075 1.37903i −0.879076 0.476682i \(-0.841839\pi\)
0.431001 0.902351i \(-0.358161\pi\)
\(840\) 0.927051 2.85317i 0.0319863 0.0984437i
\(841\) 23.4615 + 17.0458i 0.809017 + 0.587785i
\(842\) −23.8214 17.3073i −0.820939 0.596447i
\(843\) −2.14093 + 6.58911i −0.0737376 + 0.226941i
\(844\) 0 0
\(845\) −0.809017 + 0.587785i −0.0278310 + 0.0202204i
\(846\) 31.1769 1.07188
\(847\) 0 0
\(848\) −30.0000 −1.03020
\(849\) 4.20378 3.05422i 0.144273 0.104821i
\(850\) −3.70820 11.4127i −0.127190 0.391452i
\(851\) 0 0
\(852\) −9.70820 7.05342i −0.332598 0.241646i
\(853\) −28.0252 20.3615i −0.959564 0.697164i −0.00651423 0.999979i \(-0.502074\pi\)
−0.953049 + 0.302815i \(0.902074\pi\)
\(854\) 8.02850 24.7092i 0.274730 0.845530i
\(855\) 2.14093 + 6.58911i 0.0732183 + 0.225343i
\(856\) 2.42705 1.76336i 0.0829549 0.0602703i
\(857\) 10.3923 0.354994 0.177497 0.984121i \(-0.443200\pi\)
0.177497 + 0.984121i \(0.443200\pi\)
\(858\) 0 0
\(859\) 14.0000 0.477674 0.238837 0.971060i \(-0.423234\pi\)
0.238837 + 0.971060i \(0.423234\pi\)
\(860\) −7.00629 + 5.09037i −0.238913 + 0.173580i
\(861\) 6.48936 + 19.9722i 0.221157 + 0.680650i
\(862\) 20.3951 62.7697i 0.694661 2.13795i
\(863\) −16.9894 12.3435i −0.578324 0.420177i 0.259795 0.965664i \(-0.416345\pi\)
−0.838120 + 0.545486i \(0.816345\pi\)
\(864\) −21.0189 15.2711i −0.715077 0.519534i
\(865\) 3.21140 9.88367i 0.109191 0.336055i
\(866\) −17.1275 52.7129i −0.582015 1.79126i
\(867\) 25.0795 18.2213i 0.851745 0.618829i
\(868\) −13.8564 −0.470317
\(869\) 0 0
\(870\) 0 0
\(871\) −14.0126 + 10.1807i −0.474798 + 0.344961i
\(872\) −0.927051 2.85317i −0.0313939 0.0966205i
\(873\) 6.18034 19.0211i 0.209173 0.643768i
\(874\) 0 0
\(875\) 1.40126 + 1.01807i 0.0473712 + 0.0344172i
\(876\) 0 0
\(877\) 8.56373 + 26.3565i 0.289177 + 0.889994i 0.985116 + 0.171893i \(0.0549884\pi\)
−0.695939 + 0.718101i \(0.745012\pi\)
\(878\) 38.8328 28.2137i 1.31054 0.952166i
\(879\) −6.92820 −0.233682
\(880\) 0 0
\(881\) −21.0000 −0.707508 −0.353754 0.935339i \(-0.615095\pi\)
−0.353754 + 0.935339i \(0.615095\pi\)
\(882\) 11.2101 8.14459i 0.377463 0.274243i
\(883\) −17.3050 53.2592i −0.582358 1.79231i −0.609631 0.792686i \(-0.708682\pi\)
0.0272727 0.999628i \(-0.491318\pi\)
\(884\) −7.41641 + 22.8254i −0.249441 + 0.767700i
\(885\) 9.70820 + 7.05342i 0.326338 + 0.237098i
\(886\) −21.0189 15.2711i −0.706143 0.513043i
\(887\) 10.1694 31.2983i 0.341456 1.05089i −0.621998 0.783019i \(-0.713679\pi\)
0.963454 0.267875i \(-0.0863213\pi\)
\(888\) 4.28187 + 13.1782i 0.143690 + 0.442232i
\(889\) 2.42705 1.76336i 0.0814007 0.0591411i
\(890\) 5.19615 0.174175
\(891\) 0 0
\(892\) −19.0000 −0.636167
\(893\) −25.2227 + 18.3253i −0.844044 + 0.613234i
\(894\) 10.1976 + 31.3849i 0.341057 + 1.04967i
\(895\) 5.56231 17.1190i 0.185927 0.572226i
\(896\) 16.9894 + 12.3435i 0.567575 + 0.412367i
\(897\) 0 0
\(898\) 8.02850 24.7092i 0.267914 0.824556i
\(899\) 0 0
\(900\) 1.61803 1.17557i 0.0539345 0.0391857i
\(901\) 41.5692 1.38487
\(902\) 0 0
\(903\) 15.0000 0.499169
\(904\) 8.40755 6.10844i 0.279631 0.203164i
\(905\) −3.39919 10.4616i −0.112993 0.347756i
\(906\) 11.1246 34.2380i 0.369590 1.13748i
\(907\) −13.7533 9.99235i −0.456670 0.331791i 0.335553 0.942021i \(-0.391077\pi\)
−0.792224 + 0.610231i \(0.791077\pi\)
\(908\) 15.4138 + 11.1988i 0.511526 + 0.371646i
\(909\) −1.07047 + 3.29456i −0.0355051 + 0.109274i
\(910\) −3.21140 9.88367i −0.106457 0.327640i
\(911\) −4.85410 + 3.52671i −0.160824 + 0.116845i −0.665286 0.746588i \(-0.731691\pi\)
0.504463 + 0.863433i \(0.331691\pi\)
\(912\) 17.3205 0.573539
\(913\) 0 0
\(914\) 36.0000 1.19077
\(915\) 7.00629 5.09037i 0.231621 0.168282i
\(916\) 2.16312 + 6.65740i 0.0714715 + 0.219967i
\(917\) 1.85410 5.70634i 0.0612278 0.188440i
\(918\) 48.5410 + 35.2671i 1.60209 + 1.16399i
\(919\) 30.8277 + 22.3976i 1.01691 + 0.738830i 0.965647 0.259856i \(-0.0836750\pi\)
0.0512641 + 0.998685i \(0.483675\pi\)
\(920\) 0 0
\(921\) −3.21140 9.88367i −0.105819 0.325678i
\(922\) 16.9894 12.3435i 0.559515 0.406511i
\(923\) 41.5692 1.36827
\(924\) 0 0
\(925\) −8.00000 −0.263038
\(926\) 57.4516 41.7410i 1.88798 1.37170i
\(927\) 2.47214 + 7.60845i 0.0811956 + 0.249894i
\(928\) 0 0
\(929\) −14.5623 10.5801i −0.477774 0.347123i 0.322689 0.946505i \(-0.395413\pi\)
−0.800463 + 0.599382i \(0.795413\pi\)
\(930\) −11.2101 8.14459i −0.367593 0.267072i
\(931\) −4.28187 + 13.1782i −0.140332 + 0.431899i
\(932\) 1.07047 + 3.29456i 0.0350643 + 0.107917i
\(933\) −4.85410 + 3.52671i −0.158916 + 0.115459i
\(934\) −5.19615 −0.170023
\(935\) 0 0
\(936\) 12.0000 0.392232
\(937\) −19.6176 + 14.2530i −0.640880 + 0.465626i −0.860152 0.510037i \(-0.829632\pi\)
0.219273 + 0.975664i \(0.429632\pi\)
\(938\) 4.63525 + 14.2658i 0.151346 + 0.465796i
\(939\) −3.09017 + 9.51057i −0.100844 + 0.310366i
\(940\) 7.28115 + 5.29007i 0.237485 + 0.172543i
\(941\) −40.6365 29.5241i −1.32471 0.962460i −0.999861 0.0166945i \(-0.994686\pi\)
−0.324851 0.945765i \(-0.605314\pi\)
\(942\) 2.14093 6.58911i 0.0697554 0.214685i
\(943\) 0 0
\(944\) −48.5410 + 35.2671i −1.57988 + 1.14785i
\(945\) −8.66025 −0.281718
\(946\) 0 0
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) 8.40755 6.10844i 0.273065 0.198393i
\(949\) 0 0
\(950\) −1.85410 + 5.70634i −0.0601550 + 0.185138i
\(951\) −4.85410 3.52671i −0.157405 0.114361i
\(952\) −16.8151 12.2169i −0.544981 0.395952i
\(953\) −17.1275 + 52.7129i −0.554813 + 1.70754i 0.141624 + 0.989920i \(0.454768\pi\)
−0.696437 + 0.717618i \(0.745232\pi\)
\(954\) 6.42280 + 19.7673i 0.207946 + 0.639991i
\(955\) −4.85410 + 3.52671i −0.157075 + 0.114122i
\(956\) −3.46410 −0.112037
\(957\) 0 0
\(958\) 18.0000 0.581554
\(959\) −25.2227 + 18.3253i −0.814482 + 0.591756i
\(960\) 0.309017 + 0.951057i 0.00997348 + 0.0306952i
\(961\) 10.1976 31.3849i 0.328954 1.01242i
\(962\) 38.8328 + 28.2137i 1.25202 + 0.909646i
\(963\) −2.80252 2.03615i −0.0903099 0.0656139i
\(964\) 5.88756 18.1201i 0.189626 0.583608i
\(965\) −1.07047 3.29456i −0.0344595 0.106056i
\(966\) 0 0
\(967\) −38.1051 −1.22538 −0.612689 0.790324i \(-0.709912\pi\)
−0.612689 + 0.790324i \(0.709912\pi\)
\(968\) 0 0
\(969\) −24.0000 −0.770991
\(970\) 14.0126 10.1807i 0.449917 0.326884i
\(971\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(972\) −4.94427 + 15.2169i −0.158588 + 0.488082i
\(973\) 19.4164 + 14.1068i 0.622461 + 0.452245i
\(974\) −28.0252 20.3615i −0.897984 0.652424i
\(975\) 1.07047 3.29456i 0.0342824 0.105510i
\(976\) 13.3808 + 41.1820i 0.428310 + 1.31820i
\(977\) 19.4164 14.1068i 0.621186 0.451318i −0.232150 0.972680i \(-0.574576\pi\)
0.853336 + 0.521362i \(0.174576\pi\)
\(978\) −32.9090 −1.05231
\(979\) 0 0
\(980\) 4.00000 0.127775
\(981\) −2.80252 + 2.03615i −0.0894775 + 0.0650092i
\(982\) 12.9787 + 39.9444i 0.414167 + 1.27468i
\(983\) −0.927051 + 2.85317i −0.0295683 + 0.0910020i −0.964752 0.263162i \(-0.915235\pi\)
0.935183 + 0.354164i \(0.115235\pi\)
\(984\) −16.9894 12.3435i −0.541601 0.393496i
\(985\) 8.40755 + 6.10844i 0.267887 + 0.194631i
\(986\) 0 0
\(987\) −4.81710 14.8255i −0.153330 0.471901i
\(988\) 9.70820 7.05342i 0.308859 0.224399i
\(989\) 0 0
\(990\) 0 0
\(991\) −2.00000 −0.0635321 −0.0317660 0.999495i \(-0.510113\pi\)
−0.0317660 + 0.999495i \(0.510113\pi\)
\(992\) 33.6302 24.4338i 1.06776 0.775773i
\(993\) 10.5066 + 32.3359i 0.333416 + 1.02615i
\(994\) 11.1246 34.2380i 0.352851 1.08596i
\(995\) −11.3262 8.22899i −0.359066 0.260877i
\(996\) −2.80252 2.03615i −0.0888012 0.0645178i
\(997\) 13.9161 42.8292i 0.440726 1.35642i −0.446377 0.894845i \(-0.647286\pi\)
0.887103 0.461571i \(-0.152714\pi\)
\(998\) 20.3389 + 62.5966i 0.643815 + 1.98146i
\(999\) 32.3607 23.5114i 1.02385 0.743868i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.g.i.366.2 8
11.2 odd 10 605.2.a.e.1.2 yes 2
11.3 even 5 inner 605.2.g.i.511.1 8
11.4 even 5 inner 605.2.g.i.81.2 8
11.5 even 5 inner 605.2.g.i.251.1 8
11.6 odd 10 inner 605.2.g.i.251.2 8
11.7 odd 10 inner 605.2.g.i.81.1 8
11.8 odd 10 inner 605.2.g.i.511.2 8
11.9 even 5 605.2.a.e.1.1 2
11.10 odd 2 inner 605.2.g.i.366.1 8
33.2 even 10 5445.2.a.u.1.1 2
33.20 odd 10 5445.2.a.u.1.2 2
44.31 odd 10 9680.2.a.bu.1.1 2
44.35 even 10 9680.2.a.bu.1.2 2
55.9 even 10 3025.2.a.l.1.2 2
55.24 odd 10 3025.2.a.l.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
605.2.a.e.1.1 2 11.9 even 5
605.2.a.e.1.2 yes 2 11.2 odd 10
605.2.g.i.81.1 8 11.7 odd 10 inner
605.2.g.i.81.2 8 11.4 even 5 inner
605.2.g.i.251.1 8 11.5 even 5 inner
605.2.g.i.251.2 8 11.6 odd 10 inner
605.2.g.i.366.1 8 11.10 odd 2 inner
605.2.g.i.366.2 8 1.1 even 1 trivial
605.2.g.i.511.1 8 11.3 even 5 inner
605.2.g.i.511.2 8 11.8 odd 10 inner
3025.2.a.l.1.1 2 55.24 odd 10
3025.2.a.l.1.2 2 55.9 even 10
5445.2.a.u.1.1 2 33.2 even 10
5445.2.a.u.1.2 2 33.20 odd 10
9680.2.a.bu.1.1 2 44.31 odd 10
9680.2.a.bu.1.2 2 44.35 even 10