Properties

Label 2-6069-1.1-c1-0-75
Degree $2$
Conductor $6069$
Sign $1$
Analytic cond. $48.4612$
Root an. cond. $6.96140$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.56·2-s − 3-s + 0.459·4-s + 2.88·5-s + 1.56·6-s + 7-s + 2.41·8-s + 9-s − 4.52·10-s + 0.607·11-s − 0.459·12-s + 2.94·13-s − 1.56·14-s − 2.88·15-s − 4.70·16-s − 1.56·18-s − 4.36·19-s + 1.32·20-s − 21-s − 0.953·22-s + 1.57·23-s − 2.41·24-s + 3.33·25-s − 4.61·26-s − 27-s + 0.459·28-s − 6.71·29-s + ⋯
L(s)  = 1  − 1.10·2-s − 0.577·3-s + 0.229·4-s + 1.29·5-s + 0.640·6-s + 0.377·7-s + 0.854·8-s + 0.333·9-s − 1.43·10-s + 0.183·11-s − 0.132·12-s + 0.816·13-s − 0.419·14-s − 0.745·15-s − 1.17·16-s − 0.369·18-s − 1.00·19-s + 0.296·20-s − 0.218·21-s − 0.203·22-s + 0.328·23-s − 0.493·24-s + 0.666·25-s − 0.905·26-s − 0.192·27-s + 0.0869·28-s − 1.24·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6069 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6069 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6069\)    =    \(3 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(48.4612\)
Root analytic conductor: \(6.96140\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6069,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.160024413\)
\(L(\frac12)\) \(\approx\) \(1.160024413\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 \)
good2 \( 1 + 1.56T + 2T^{2} \)
5 \( 1 - 2.88T + 5T^{2} \)
11 \( 1 - 0.607T + 11T^{2} \)
13 \( 1 - 2.94T + 13T^{2} \)
19 \( 1 + 4.36T + 19T^{2} \)
23 \( 1 - 1.57T + 23T^{2} \)
29 \( 1 + 6.71T + 29T^{2} \)
31 \( 1 - 7.18T + 31T^{2} \)
37 \( 1 + 3.24T + 37T^{2} \)
41 \( 1 + 3.67T + 41T^{2} \)
43 \( 1 - 3.91T + 43T^{2} \)
47 \( 1 - 5.16T + 47T^{2} \)
53 \( 1 + 1.08T + 53T^{2} \)
59 \( 1 + 5.98T + 59T^{2} \)
61 \( 1 + 9.96T + 61T^{2} \)
67 \( 1 - 6.64T + 67T^{2} \)
71 \( 1 - 7.11T + 71T^{2} \)
73 \( 1 - 12.1T + 73T^{2} \)
79 \( 1 - 7.08T + 79T^{2} \)
83 \( 1 - 3.31T + 83T^{2} \)
89 \( 1 - 8.33T + 89T^{2} \)
97 \( 1 - 13.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.180889392508410810711306904578, −7.50951216163079842634825218197, −6.54924352918586400720863552986, −6.16130449645785359267718680337, −5.28069936214884055958224171634, −4.62738657883719211306489304969, −3.69025868342638801496566141616, −2.23860932211185329358701043707, −1.63988977204608327120081058345, −0.73034723404557306377468884047, 0.73034723404557306377468884047, 1.63988977204608327120081058345, 2.23860932211185329358701043707, 3.69025868342638801496566141616, 4.62738657883719211306489304969, 5.28069936214884055958224171634, 6.16130449645785359267718680337, 6.54924352918586400720863552986, 7.50951216163079842634825218197, 8.180889392508410810711306904578

Graph of the $Z$-function along the critical line