Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [6069,2,Mod(1,6069)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6069, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6069.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 6069.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.29067 | −1.00000 | 3.24715 | −1.24679 | 2.29067 | 1.00000 | −2.85680 | 1.00000 | 2.85597 | |||||||||||||||||||||||||||||||||||||||||||||
1.2 | −1.59403 | −1.00000 | 0.540946 | −3.07440 | 1.59403 | 1.00000 | 2.32578 | 1.00000 | 4.90069 | ||||||||||||||||||||||||||||||||||||||||||||||
1.3 | −1.56840 | −1.00000 | 0.459871 | 2.88639 | 1.56840 | 1.00000 | 2.41553 | 1.00000 | −4.52700 | ||||||||||||||||||||||||||||||||||||||||||||||
1.4 | −0.765541 | −1.00000 | −1.41395 | 2.98515 | 0.765541 | 1.00000 | 2.61352 | 1.00000 | −2.28526 | ||||||||||||||||||||||||||||||||||||||||||||||
1.5 | −0.118284 | −1.00000 | −1.98601 | −1.64632 | 0.118284 | 1.00000 | 0.471482 | 1.00000 | 0.194734 | ||||||||||||||||||||||||||||||||||||||||||||||
1.6 | 0.259117 | −1.00000 | −1.93286 | −1.75189 | −0.259117 | 1.00000 | −1.01907 | 1.00000 | −0.453943 | ||||||||||||||||||||||||||||||||||||||||||||||
1.7 | 1.30928 | −1.00000 | −0.285783 | 0.212797 | −1.30928 | 1.00000 | −2.99273 | 1.00000 | 0.278612 | ||||||||||||||||||||||||||||||||||||||||||||||
1.8 | 2.35958 | −1.00000 | 3.56759 | 2.62133 | −2.35958 | 1.00000 | 3.69886 | 1.00000 | 6.18522 | ||||||||||||||||||||||||||||||||||||||||||||||
1.9 | 2.40895 | −1.00000 | 3.80304 | 2.01373 | −2.40895 | 1.00000 | 4.34343 | 1.00000 | 4.85097 | ||||||||||||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 6069.2.a.ba | ✓ | 9 |
17.b | even | 2 | 1 | 6069.2.a.bb | yes | 9 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
6069.2.a.ba | ✓ | 9 | 1.a | even | 1 | 1 | trivial |
6069.2.a.bb | yes | 9 | 17.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|
|