Properties

Label 6069.2.a.ba
Level 60696069
Weight 22
Character orbit 6069.a
Self dual yes
Analytic conductor 48.46148.461
Analytic rank 00
Dimension 99
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6069,2,Mod(1,6069)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6069, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6069.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 6069=37172 6069 = 3 \cdot 7 \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 6069.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 48.461208986748.4612089867
Analytic rank: 00
Dimension: 99
Coefficient field: Q[x]/(x9)\mathbb{Q}[x]/(x^{9} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x912x73x6+45x5+21x451x327x2+6x+1 x^{9} - 12x^{7} - 3x^{6} + 45x^{5} + 21x^{4} - 51x^{3} - 27x^{2} + 6x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β81,\beta_1,\ldots,\beta_{8} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2q3+(β5β4+1)q4+(β6+β1)q5β1q6+q7+(β6β4β3++1)q8+q9+(β6+β52β4++2)q10++(β8β7+β2+2)q99+O(q100) q + \beta_1 q^{2} - q^{3} + (\beta_{5} - \beta_{4} + 1) q^{4} + (\beta_{6} + \beta_1) q^{5} - \beta_1 q^{6} + q^{7} + (\beta_{6} - \beta_{4} - \beta_{3} + \cdots + 1) q^{8} + q^{9} + ( - \beta_{6} + \beta_{5} - 2 \beta_{4} + \cdots + 2) q^{10}+ \cdots + ( - \beta_{8} - \beta_{7} + \beta_{2} + 2) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 9q9q3+6q4+3q5+9q7+9q8+9q9+12q10+12q116q12+3q133q15+3q19+15q209q21+6q22+18q239q243q269q27++12q99+O(q100) 9 q - 9 q^{3} + 6 q^{4} + 3 q^{5} + 9 q^{7} + 9 q^{8} + 9 q^{9} + 12 q^{10} + 12 q^{11} - 6 q^{12} + 3 q^{13} - 3 q^{15} + 3 q^{19} + 15 q^{20} - 9 q^{21} + 6 q^{22} + 18 q^{23} - 9 q^{24} - 3 q^{26} - 9 q^{27}+ \cdots + 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x912x73x6+45x5+21x451x327x2+6x+1 x^{9} - 12x^{7} - 3x^{6} + 45x^{5} + 21x^{4} - 51x^{3} - 27x^{2} + 6x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν8+2ν7+9ν615ν522ν4+24ν3+11ν23ν+1 -\nu^{8} + 2\nu^{7} + 9\nu^{6} - 15\nu^{5} - 22\nu^{4} + 24\nu^{3} + 11\nu^{2} - 3\nu + 1 Copy content Toggle raw display
β3\beta_{3}== ν8ν710ν6+7ν5+30ν49ν327ν22ν+2 \nu^{8} - \nu^{7} - 10\nu^{6} + 7\nu^{5} + 30\nu^{4} - 9\nu^{3} - 27\nu^{2} - 2\nu + 2 Copy content Toggle raw display
β4\beta_{4}== ν82ν79ν6+16ν5+22ν431ν312ν2+12ν \nu^{8} - 2\nu^{7} - 9\nu^{6} + 16\nu^{5} + 22\nu^{4} - 31\nu^{3} - 12\nu^{2} + 12\nu Copy content Toggle raw display
β5\beta_{5}== ν82ν79ν6+16ν5+22ν431ν311ν2+12ν3 \nu^{8} - 2\nu^{7} - 9\nu^{6} + 16\nu^{5} + 22\nu^{4} - 31\nu^{3} - 11\nu^{2} + 12\nu - 3 Copy content Toggle raw display
β6\beta_{6}== 3ν85ν728ν6+38ν5+74ν463ν350ν2+8ν 3\nu^{8} - 5\nu^{7} - 28\nu^{6} + 38\nu^{5} + 74\nu^{4} - 63\nu^{3} - 50\nu^{2} + 8\nu Copy content Toggle raw display
β7\beta_{7}== 3ν84ν730ν6+29ν5+89ν441ν374ν23ν+3 3\nu^{8} - 4\nu^{7} - 30\nu^{6} + 29\nu^{5} + 89\nu^{4} - 41\nu^{3} - 74\nu^{2} - 3\nu + 3 Copy content Toggle raw display
β8\beta_{8}== 3ν8+5ν7+29ν638ν582ν4+63ν3+64ν210ν2 -3\nu^{8} + 5\nu^{7} + 29\nu^{6} - 38\nu^{5} - 82\nu^{4} + 63\nu^{3} + 64\nu^{2} - 10\nu - 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β5β4+3 \beta_{5} - \beta_{4} + 3 Copy content Toggle raw display
ν3\nu^{3}== β6β4β3+β2+5β1+1 \beta_{6} - \beta_{4} - \beta_{3} + \beta_{2} + 5\beta _1 + 1 Copy content Toggle raw display
ν4\nu^{4}== β8β7+5β56β4+β3+β1+14 -\beta_{8} - \beta_{7} + 5\beta_{5} - 6\beta_{4} + \beta_{3} + \beta _1 + 14 Copy content Toggle raw display
ν5\nu^{5}== 7β6+β57β47β3+8β2+26β1+9 7\beta_{6} + \beta_{5} - 7\beta_{4} - 7\beta_{3} + 8\beta_{2} + 26\beta _1 + 9 Copy content Toggle raw display
ν6\nu^{6}== 7β88β7+β6+26β534β4+8β3+10β1+72 -7\beta_{8} - 8\beta_{7} + \beta_{6} + 26\beta_{5} - 34\beta_{4} + 8\beta_{3} + 10\beta _1 + 72 Copy content Toggle raw display
ν7\nu^{7}== β8+42β6+10β543β440β3+50β2+140β1+62 \beta_{8} + 42\beta_{6} + 10\beta_{5} - 43\beta_{4} - 40\beta_{3} + 50\beta_{2} + 140\beta _1 + 62 Copy content Toggle raw display
ν8\nu^{8}== 39β850β7+12β6+140β5190β4+51β3+3β2+75β1+387 -39\beta_{8} - 50\beta_{7} + 12\beta_{6} + 140\beta_{5} - 190\beta_{4} + 51\beta_{3} + 3\beta_{2} + 75\beta _1 + 387 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.29067
−1.59403
−1.56840
−0.765541
−0.118284
0.259117
1.30928
2.35958
2.40895
−2.29067 −1.00000 3.24715 −1.24679 2.29067 1.00000 −2.85680 1.00000 2.85597
1.2 −1.59403 −1.00000 0.540946 −3.07440 1.59403 1.00000 2.32578 1.00000 4.90069
1.3 −1.56840 −1.00000 0.459871 2.88639 1.56840 1.00000 2.41553 1.00000 −4.52700
1.4 −0.765541 −1.00000 −1.41395 2.98515 0.765541 1.00000 2.61352 1.00000 −2.28526
1.5 −0.118284 −1.00000 −1.98601 −1.64632 0.118284 1.00000 0.471482 1.00000 0.194734
1.6 0.259117 −1.00000 −1.93286 −1.75189 −0.259117 1.00000 −1.01907 1.00000 −0.453943
1.7 1.30928 −1.00000 −0.285783 0.212797 −1.30928 1.00000 −2.99273 1.00000 0.278612
1.8 2.35958 −1.00000 3.56759 2.62133 −2.35958 1.00000 3.69886 1.00000 6.18522
1.9 2.40895 −1.00000 3.80304 2.01373 −2.40895 1.00000 4.34343 1.00000 4.85097
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.9
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
77 1 -1
1717 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6069.2.a.ba 9
17.b even 2 1 6069.2.a.bb yes 9
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6069.2.a.ba 9 1.a even 1 1 trivial
6069.2.a.bb yes 9 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(6069))S_{2}^{\mathrm{new}}(\Gamma_0(6069)):

T2912T273T26+45T25+21T2451T2327T22+6T2+1 T_{2}^{9} - 12T_{2}^{7} - 3T_{2}^{6} + 45T_{2}^{5} + 21T_{2}^{4} - 51T_{2}^{3} - 27T_{2}^{2} + 6T_{2} + 1 Copy content Toggle raw display
T593T5818T57+51T56+111T55261T54330T53+456T52+423T5107 T_{5}^{9} - 3T_{5}^{8} - 18T_{5}^{7} + 51T_{5}^{6} + 111T_{5}^{5} - 261T_{5}^{4} - 330T_{5}^{3} + 456T_{5}^{2} + 423T_{5} - 107 Copy content Toggle raw display
T11912T118+30T117+147T116915T115+1662T114+323 T_{11}^{9} - 12 T_{11}^{8} + 30 T_{11}^{7} + 147 T_{11}^{6} - 915 T_{11}^{5} + 1662 T_{11}^{4} + \cdots - 323 Copy content Toggle raw display
T23918T238+90T237+90T2361890T235+4266T234++7209 T_{23}^{9} - 18 T_{23}^{8} + 90 T_{23}^{7} + 90 T_{23}^{6} - 1890 T_{23}^{5} + 4266 T_{23}^{4} + \cdots + 7209 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T912T7++1 T^{9} - 12 T^{7} + \cdots + 1 Copy content Toggle raw display
33 (T+1)9 (T + 1)^{9} Copy content Toggle raw display
55 T93T8+107 T^{9} - 3 T^{8} + \cdots - 107 Copy content Toggle raw display
77 (T1)9 (T - 1)^{9} Copy content Toggle raw display
1111 T912T8+323 T^{9} - 12 T^{8} + \cdots - 323 Copy content Toggle raw display
1313 T93T8+397 T^{9} - 3 T^{8} + \cdots - 397 Copy content Toggle raw display
1717 T9 T^{9} Copy content Toggle raw display
1919 T93T8++17 T^{9} - 3 T^{8} + \cdots + 17 Copy content Toggle raw display
2323 T918T8++7209 T^{9} - 18 T^{8} + \cdots + 7209 Copy content Toggle raw display
2929 T96T8+60173 T^{9} - 6 T^{8} + \cdots - 60173 Copy content Toggle raw display
3131 T930T8+194343 T^{9} - 30 T^{8} + \cdots - 194343 Copy content Toggle raw display
3737 T912T8+161949 T^{9} - 12 T^{8} + \cdots - 161949 Copy content Toggle raw display
4141 T915T8++241361 T^{9} - 15 T^{8} + \cdots + 241361 Copy content Toggle raw display
4343 T9+12T8+86111 T^{9} + 12 T^{8} + \cdots - 86111 Copy content Toggle raw display
4747 T915T8++4132731 T^{9} - 15 T^{8} + \cdots + 4132731 Copy content Toggle raw display
5353 T9+6T8++44067 T^{9} + 6 T^{8} + \cdots + 44067 Copy content Toggle raw display
5959 T93T8+6140601 T^{9} - 3 T^{8} + \cdots - 6140601 Copy content Toggle raw display
6161 T93T8++507943 T^{9} - 3 T^{8} + \cdots + 507943 Copy content Toggle raw display
6767 T9+3T8+161855839 T^{9} + 3 T^{8} + \cdots - 161855839 Copy content Toggle raw display
7171 T912T8+23362077 T^{9} - 12 T^{8} + \cdots - 23362077 Copy content Toggle raw display
7373 T915T8+765216021 T^{9} - 15 T^{8} + \cdots - 765216021 Copy content Toggle raw display
7979 T9+18T8++13722047 T^{9} + 18 T^{8} + \cdots + 13722047 Copy content Toggle raw display
8383 T924T8+125117463 T^{9} - 24 T^{8} + \cdots - 125117463 Copy content Toggle raw display
8989 T9252T7++9673361 T^{9} - 252 T^{7} + \cdots + 9673361 Copy content Toggle raw display
9797 T936T8++6040389 T^{9} - 36 T^{8} + \cdots + 6040389 Copy content Toggle raw display
show more
show less