Properties

Label 2-6069-1.1-c1-0-186
Degree $2$
Conductor $6069$
Sign $1$
Analytic cond. $48.4612$
Root an. cond. $6.96140$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.35·2-s − 3-s + 3.56·4-s + 2.62·5-s − 2.35·6-s + 7-s + 3.69·8-s + 9-s + 6.18·10-s + 3.18·11-s − 3.56·12-s + 1.86·13-s + 2.35·14-s − 2.62·15-s + 1.59·16-s + 2.35·18-s + 0.108·19-s + 9.35·20-s − 21-s + 7.51·22-s + 2.37·23-s − 3.69·24-s + 1.87·25-s + 4.40·26-s − 27-s + 3.56·28-s − 4.91·29-s + ⋯
L(s)  = 1  + 1.66·2-s − 0.577·3-s + 1.78·4-s + 1.17·5-s − 0.963·6-s + 0.377·7-s + 1.30·8-s + 0.333·9-s + 1.95·10-s + 0.959·11-s − 1.02·12-s + 0.517·13-s + 0.630·14-s − 0.676·15-s + 0.398·16-s + 0.556·18-s + 0.0248·19-s + 2.09·20-s − 0.218·21-s + 1.60·22-s + 0.495·23-s − 0.755·24-s + 0.374·25-s + 0.863·26-s − 0.192·27-s + 0.674·28-s − 0.912·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6069 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6069 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6069\)    =    \(3 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(48.4612\)
Root analytic conductor: \(6.96140\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6069,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.751933365\)
\(L(\frac12)\) \(\approx\) \(6.751933365\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 \)
good2 \( 1 - 2.35T + 2T^{2} \)
5 \( 1 - 2.62T + 5T^{2} \)
11 \( 1 - 3.18T + 11T^{2} \)
13 \( 1 - 1.86T + 13T^{2} \)
19 \( 1 - 0.108T + 19T^{2} \)
23 \( 1 - 2.37T + 23T^{2} \)
29 \( 1 + 4.91T + 29T^{2} \)
31 \( 1 - 8.37T + 31T^{2} \)
37 \( 1 - 7.42T + 37T^{2} \)
41 \( 1 - 4.38T + 41T^{2} \)
43 \( 1 + 6.27T + 43T^{2} \)
47 \( 1 + 13.1T + 47T^{2} \)
53 \( 1 - 7.25T + 53T^{2} \)
59 \( 1 - 11.1T + 59T^{2} \)
61 \( 1 + 9.64T + 61T^{2} \)
67 \( 1 + 11.5T + 67T^{2} \)
71 \( 1 - 10.3T + 71T^{2} \)
73 \( 1 + 6.12T + 73T^{2} \)
79 \( 1 - 4.31T + 79T^{2} \)
83 \( 1 + 3.59T + 83T^{2} \)
89 \( 1 + 4.30T + 89T^{2} \)
97 \( 1 - 3.80T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80350870051822767917735662491, −6.82269532565358116938425843466, −6.34258985700343447375787746828, −5.88401465368974986841797161749, −5.20774435629773845870766102074, −4.55905816095687621861038635305, −3.86727254009256434726038920404, −2.94692826006698162384884733955, −2.01360197268676995932428001037, −1.21783830891736367648374325968, 1.21783830891736367648374325968, 2.01360197268676995932428001037, 2.94692826006698162384884733955, 3.86727254009256434726038920404, 4.55905816095687621861038635305, 5.20774435629773845870766102074, 5.88401465368974986841797161749, 6.34258985700343447375787746828, 6.82269532565358116938425843466, 7.80350870051822767917735662491

Graph of the $Z$-function along the critical line