L(s) = 1 | + 2.35·2-s − 3-s + 3.56·4-s + 2.62·5-s − 2.35·6-s + 7-s + 3.69·8-s + 9-s + 6.18·10-s + 3.18·11-s − 3.56·12-s + 1.86·13-s + 2.35·14-s − 2.62·15-s + 1.59·16-s + 2.35·18-s + 0.108·19-s + 9.35·20-s − 21-s + 7.51·22-s + 2.37·23-s − 3.69·24-s + 1.87·25-s + 4.40·26-s − 27-s + 3.56·28-s − 4.91·29-s + ⋯ |
L(s) = 1 | + 1.66·2-s − 0.577·3-s + 1.78·4-s + 1.17·5-s − 0.963·6-s + 0.377·7-s + 1.30·8-s + 0.333·9-s + 1.95·10-s + 0.959·11-s − 1.02·12-s + 0.517·13-s + 0.630·14-s − 0.676·15-s + 0.398·16-s + 0.556·18-s + 0.0248·19-s + 2.09·20-s − 0.218·21-s + 1.60·22-s + 0.495·23-s − 0.755·24-s + 0.374·25-s + 0.863·26-s − 0.192·27-s + 0.674·28-s − 0.912·29-s + ⋯ |
Λ(s)=(=(6069s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(6069s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
6.751933365 |
L(21) |
≈ |
6.751933365 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 7 | 1−T |
| 17 | 1 |
good | 2 | 1−2.35T+2T2 |
| 5 | 1−2.62T+5T2 |
| 11 | 1−3.18T+11T2 |
| 13 | 1−1.86T+13T2 |
| 19 | 1−0.108T+19T2 |
| 23 | 1−2.37T+23T2 |
| 29 | 1+4.91T+29T2 |
| 31 | 1−8.37T+31T2 |
| 37 | 1−7.42T+37T2 |
| 41 | 1−4.38T+41T2 |
| 43 | 1+6.27T+43T2 |
| 47 | 1+13.1T+47T2 |
| 53 | 1−7.25T+53T2 |
| 59 | 1−11.1T+59T2 |
| 61 | 1+9.64T+61T2 |
| 67 | 1+11.5T+67T2 |
| 71 | 1−10.3T+71T2 |
| 73 | 1+6.12T+73T2 |
| 79 | 1−4.31T+79T2 |
| 83 | 1+3.59T+83T2 |
| 89 | 1+4.30T+89T2 |
| 97 | 1−3.80T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.80350870051822767917735662491, −6.82269532565358116938425843466, −6.34258985700343447375787746828, −5.88401465368974986841797161749, −5.20774435629773845870766102074, −4.55905816095687621861038635305, −3.86727254009256434726038920404, −2.94692826006698162384884733955, −2.01360197268676995932428001037, −1.21783830891736367648374325968,
1.21783830891736367648374325968, 2.01360197268676995932428001037, 2.94692826006698162384884733955, 3.86727254009256434726038920404, 4.55905816095687621861038635305, 5.20774435629773845870766102074, 5.88401465368974986841797161749, 6.34258985700343447375787746828, 6.82269532565358116938425843466, 7.80350870051822767917735662491