Properties

Label 2-6069-1.1-c1-0-36
Degree $2$
Conductor $6069$
Sign $1$
Analytic cond. $48.4612$
Root an. cond. $6.96140$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.30·2-s − 3-s − 0.285·4-s + 0.212·5-s − 1.30·6-s + 7-s − 2.99·8-s + 9-s + 0.278·10-s − 4.38·11-s + 0.285·12-s − 0.720·13-s + 1.30·14-s − 0.212·15-s − 3.34·16-s + 1.30·18-s − 2.07·19-s − 0.0608·20-s − 21-s − 5.74·22-s + 2.90·23-s + 2.99·24-s − 4.95·25-s − 0.942·26-s − 27-s − 0.285·28-s − 1.49·29-s + ⋯
L(s)  = 1  + 0.925·2-s − 0.577·3-s − 0.142·4-s + 0.0951·5-s − 0.534·6-s + 0.377·7-s − 1.05·8-s + 0.333·9-s + 0.0881·10-s − 1.32·11-s + 0.0824·12-s − 0.199·13-s + 0.349·14-s − 0.0549·15-s − 0.836·16-s + 0.308·18-s − 0.475·19-s − 0.0135·20-s − 0.218·21-s − 1.22·22-s + 0.606·23-s + 0.610·24-s − 0.990·25-s − 0.184·26-s − 0.192·27-s − 0.0540·28-s − 0.277·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6069 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6069 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6069\)    =    \(3 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(48.4612\)
Root analytic conductor: \(6.96140\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6069,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.533690423\)
\(L(\frac12)\) \(\approx\) \(1.533690423\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 \)
good2 \( 1 - 1.30T + 2T^{2} \)
5 \( 1 - 0.212T + 5T^{2} \)
11 \( 1 + 4.38T + 11T^{2} \)
13 \( 1 + 0.720T + 13T^{2} \)
19 \( 1 + 2.07T + 19T^{2} \)
23 \( 1 - 2.90T + 23T^{2} \)
29 \( 1 + 1.49T + 29T^{2} \)
31 \( 1 - 0.183T + 31T^{2} \)
37 \( 1 - 7.47T + 37T^{2} \)
41 \( 1 - 6.79T + 41T^{2} \)
43 \( 1 - 0.938T + 43T^{2} \)
47 \( 1 + 6.03T + 47T^{2} \)
53 \( 1 + 2.38T + 53T^{2} \)
59 \( 1 + 4.05T + 59T^{2} \)
61 \( 1 - 0.592T + 61T^{2} \)
67 \( 1 - 6.90T + 67T^{2} \)
71 \( 1 - 7.04T + 71T^{2} \)
73 \( 1 + 13.9T + 73T^{2} \)
79 \( 1 - 3.31T + 79T^{2} \)
83 \( 1 - 12.7T + 83T^{2} \)
89 \( 1 + 4.58T + 89T^{2} \)
97 \( 1 - 11.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.919487138388114779802347505278, −7.36249702634782518992214534003, −6.26295892837000524066867899624, −5.85390094503231678841406836319, −5.04925765470671188035956457294, −4.67435185724294973414810894815, −3.84382496321407237861772796946, −2.89725840712852807727721928563, −2.07491937895121823226562588249, −0.56013459899598547284982895856, 0.56013459899598547284982895856, 2.07491937895121823226562588249, 2.89725840712852807727721928563, 3.84382496321407237861772796946, 4.67435185724294973414810894815, 5.04925765470671188035956457294, 5.85390094503231678841406836319, 6.26295892837000524066867899624, 7.36249702634782518992214534003, 7.919487138388114779802347505278

Graph of the $Z$-function along the critical line