L(s) = 1 | + 2.64i·5-s + 2i·7-s − 5.29i·11-s − 7.93·17-s − 6i·19-s + 5.29·23-s − 2.00·25-s + 2.64·29-s + 4i·31-s − 5.29·35-s + 3i·37-s + 7.93i·41-s + 2·43-s − 5.29i·47-s + 3·49-s + ⋯ |
L(s) = 1 | + 1.18i·5-s + 0.755i·7-s − 1.59i·11-s − 1.92·17-s − 1.37i·19-s + 1.10·23-s − 0.400·25-s + 0.491·29-s + 0.718i·31-s − 0.894·35-s + 0.493i·37-s + 1.23i·41-s + 0.304·43-s − 0.771i·47-s + 0.428·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6084 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 - 0.554i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6084 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.832 - 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.760390610\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.760390610\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 5 | \( 1 - 2.64iT - 5T^{2} \) |
| 7 | \( 1 - 2iT - 7T^{2} \) |
| 11 | \( 1 + 5.29iT - 11T^{2} \) |
| 17 | \( 1 + 7.93T + 17T^{2} \) |
| 19 | \( 1 + 6iT - 19T^{2} \) |
| 23 | \( 1 - 5.29T + 23T^{2} \) |
| 29 | \( 1 - 2.64T + 29T^{2} \) |
| 31 | \( 1 - 4iT - 31T^{2} \) |
| 37 | \( 1 - 3iT - 37T^{2} \) |
| 41 | \( 1 - 7.93iT - 41T^{2} \) |
| 43 | \( 1 - 2T + 43T^{2} \) |
| 47 | \( 1 + 5.29iT - 47T^{2} \) |
| 53 | \( 1 - 7.93T + 53T^{2} \) |
| 59 | \( 1 + 10.5iT - 59T^{2} \) |
| 61 | \( 1 - 13T + 61T^{2} \) |
| 67 | \( 1 + 2iT - 67T^{2} \) |
| 71 | \( 1 - 5.29iT - 71T^{2} \) |
| 73 | \( 1 - 7iT - 73T^{2} \) |
| 79 | \( 1 + 4T + 79T^{2} \) |
| 83 | \( 1 + 15.8iT - 83T^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 - 2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.419188823677209357125077658079, −7.14117125961160430318399680623, −6.72194648808355840947704634348, −6.20527302271423644290530842961, −5.30743652657570578768211416349, −4.58146860233411240892781943507, −3.44553340141929751749511229439, −2.82081095737370415561386707199, −2.28995213211773416978028764483, −0.70145465678015439861907802134,
0.68224575516304149380698444799, 1.70087814950988463366599004605, 2.47414777257690956838102414481, 4.00881949301678191272096330797, 4.27374362121762830318721838309, 4.98082451996679712795097714269, 5.75745398886677038213694393374, 6.81738181849805058682072567329, 7.21582222640926262336251573311, 8.001422117862306524346951103087