L(s) = 1 | + 2.64i·5-s + 2i·7-s − 5.29i·11-s − 7.93·17-s − 6i·19-s + 5.29·23-s − 2.00·25-s + 2.64·29-s + 4i·31-s − 5.29·35-s + 3i·37-s + 7.93i·41-s + 2·43-s − 5.29i·47-s + 3·49-s + ⋯ |
L(s) = 1 | + 1.18i·5-s + 0.755i·7-s − 1.59i·11-s − 1.92·17-s − 1.37i·19-s + 1.10·23-s − 0.400·25-s + 0.491·29-s + 0.718i·31-s − 0.894·35-s + 0.493i·37-s + 1.23i·41-s + 0.304·43-s − 0.771i·47-s + 0.428·49-s + ⋯ |
Λ(s)=(=(6084s/2ΓC(s)L(s)(0.832−0.554i)Λ(2−s)
Λ(s)=(=(6084s/2ΓC(s+1/2)L(s)(0.832−0.554i)Λ(1−s)
Degree: |
2 |
Conductor: |
6084
= 22⋅32⋅132
|
Sign: |
0.832−0.554i
|
Analytic conductor: |
48.5809 |
Root analytic conductor: |
6.97000 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ6084(4393,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 6084, ( :1/2), 0.832−0.554i)
|
Particular Values
L(1) |
≈ |
1.760390610 |
L(21) |
≈ |
1.760390610 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1 |
good | 5 | 1−2.64iT−5T2 |
| 7 | 1−2iT−7T2 |
| 11 | 1+5.29iT−11T2 |
| 17 | 1+7.93T+17T2 |
| 19 | 1+6iT−19T2 |
| 23 | 1−5.29T+23T2 |
| 29 | 1−2.64T+29T2 |
| 31 | 1−4iT−31T2 |
| 37 | 1−3iT−37T2 |
| 41 | 1−7.93iT−41T2 |
| 43 | 1−2T+43T2 |
| 47 | 1+5.29iT−47T2 |
| 53 | 1−7.93T+53T2 |
| 59 | 1+10.5iT−59T2 |
| 61 | 1−13T+61T2 |
| 67 | 1+2iT−67T2 |
| 71 | 1−5.29iT−71T2 |
| 73 | 1−7iT−73T2 |
| 79 | 1+4T+79T2 |
| 83 | 1+15.8iT−83T2 |
| 89 | 1−89T2 |
| 97 | 1−2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.419188823677209357125077658079, −7.14117125961160430318399680623, −6.72194648808355840947704634348, −6.20527302271423644290530842961, −5.30743652657570578768211416349, −4.58146860233411240892781943507, −3.44553340141929751749511229439, −2.82081095737370415561386707199, −2.28995213211773416978028764483, −0.70145465678015439861907802134,
0.68224575516304149380698444799, 1.70087814950988463366599004605, 2.47414777257690956838102414481, 4.00881949301678191272096330797, 4.27374362121762830318721838309, 4.98082451996679712795097714269, 5.75745398886677038213694393374, 6.81738181849805058682072567329, 7.21582222640926262336251573311, 8.001422117862306524346951103087