Properties

Label 2-78e2-13.12-c1-0-26
Degree $2$
Conductor $6084$
Sign $0.832 - 0.554i$
Analytic cond. $48.5809$
Root an. cond. $6.97000$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.64i·5-s + 2i·7-s − 5.29i·11-s − 7.93·17-s − 6i·19-s + 5.29·23-s − 2.00·25-s + 2.64·29-s + 4i·31-s − 5.29·35-s + 3i·37-s + 7.93i·41-s + 2·43-s − 5.29i·47-s + 3·49-s + ⋯
L(s)  = 1  + 1.18i·5-s + 0.755i·7-s − 1.59i·11-s − 1.92·17-s − 1.37i·19-s + 1.10·23-s − 0.400·25-s + 0.491·29-s + 0.718i·31-s − 0.894·35-s + 0.493i·37-s + 1.23i·41-s + 0.304·43-s − 0.771i·47-s + 0.428·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6084 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 - 0.554i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6084 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.832 - 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6084\)    =    \(2^{2} \cdot 3^{2} \cdot 13^{2}\)
Sign: $0.832 - 0.554i$
Analytic conductor: \(48.5809\)
Root analytic conductor: \(6.97000\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{6084} (4393, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 6084,\ (\ :1/2),\ 0.832 - 0.554i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.760390610\)
\(L(\frac12)\) \(\approx\) \(1.760390610\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 - 2.64iT - 5T^{2} \)
7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 + 5.29iT - 11T^{2} \)
17 \( 1 + 7.93T + 17T^{2} \)
19 \( 1 + 6iT - 19T^{2} \)
23 \( 1 - 5.29T + 23T^{2} \)
29 \( 1 - 2.64T + 29T^{2} \)
31 \( 1 - 4iT - 31T^{2} \)
37 \( 1 - 3iT - 37T^{2} \)
41 \( 1 - 7.93iT - 41T^{2} \)
43 \( 1 - 2T + 43T^{2} \)
47 \( 1 + 5.29iT - 47T^{2} \)
53 \( 1 - 7.93T + 53T^{2} \)
59 \( 1 + 10.5iT - 59T^{2} \)
61 \( 1 - 13T + 61T^{2} \)
67 \( 1 + 2iT - 67T^{2} \)
71 \( 1 - 5.29iT - 71T^{2} \)
73 \( 1 - 7iT - 73T^{2} \)
79 \( 1 + 4T + 79T^{2} \)
83 \( 1 + 15.8iT - 83T^{2} \)
89 \( 1 - 89T^{2} \)
97 \( 1 - 2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.419188823677209357125077658079, −7.14117125961160430318399680623, −6.72194648808355840947704634348, −6.20527302271423644290530842961, −5.30743652657570578768211416349, −4.58146860233411240892781943507, −3.44553340141929751749511229439, −2.82081095737370415561386707199, −2.28995213211773416978028764483, −0.70145465678015439861907802134, 0.68224575516304149380698444799, 1.70087814950988463366599004605, 2.47414777257690956838102414481, 4.00881949301678191272096330797, 4.27374362121762830318721838309, 4.98082451996679712795097714269, 5.75745398886677038213694393374, 6.81738181849805058682072567329, 7.21582222640926262336251573311, 8.001422117862306524346951103087

Graph of the $Z$-function along the critical line