Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [6084,2,Mod(4393,6084)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6084, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6084.4393");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 6084 = 2^{2} \cdot 3^{2} \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6084.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(48.5809845897\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(i, \sqrt{7})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{4} - 3x^{2} + 4 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{17}]\) |
Coefficient ring index: | \( 2^{2} \) |
Twist minimal: | no (minimal twist has level 468) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 4393.4 | ||
Root | \(1.32288 - 0.500000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 6084.4393 |
Dual form | 6084.2.b.n.4393.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6084\mathbb{Z}\right)^\times\).
\(n\) | \(677\) | \(3043\) | \(3889\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 2.64575i | 1.18322i | 0.806226 | + | 0.591608i | \(0.201507\pi\) | ||||
−0.806226 | + | 0.591608i | \(0.798493\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 2.00000i | 0.755929i | 0.925820 | + | 0.377964i | \(0.123376\pi\) | ||||
−0.925820 | + | 0.377964i | \(0.876624\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | − 5.29150i | − 1.59545i | −0.603023 | − | 0.797724i | \(-0.706037\pi\) | ||||
0.603023 | − | 0.797724i | \(-0.293963\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −7.93725 | −1.92507 | −0.962533 | − | 0.271163i | \(-0.912592\pi\) | ||||
−0.962533 | + | 0.271163i | \(0.912592\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | − 6.00000i | − 1.37649i | −0.725476 | − | 0.688247i | \(-0.758380\pi\) | ||||
0.725476 | − | 0.688247i | \(-0.241620\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 5.29150 | 1.10335 | 0.551677 | − | 0.834058i | \(-0.313988\pi\) | ||||
0.551677 | + | 0.834058i | \(0.313988\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −2.00000 | −0.400000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 2.64575 | 0.491304 | 0.245652 | − | 0.969358i | \(-0.420998\pi\) | ||||
0.245652 | + | 0.969358i | \(0.420998\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 4.00000i | 0.718421i | 0.933257 | + | 0.359211i | \(0.116954\pi\) | ||||
−0.933257 | + | 0.359211i | \(0.883046\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | −5.29150 | −0.894427 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 3.00000i | 0.493197i | 0.969118 | + | 0.246598i | \(0.0793129\pi\) | ||||
−0.969118 | + | 0.246598i | \(0.920687\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 7.93725i | 1.23959i | 0.784763 | + | 0.619795i | \(0.212784\pi\) | ||||
−0.784763 | + | 0.619795i | \(0.787216\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 2.00000 | 0.304997 | 0.152499 | − | 0.988304i | \(-0.451268\pi\) | ||||
0.152499 | + | 0.988304i | \(0.451268\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | − 5.29150i | − 0.771845i | −0.922531 | − | 0.385922i | \(-0.873883\pi\) | ||||
0.922531 | − | 0.385922i | \(-0.126117\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 3.00000 | 0.428571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 7.93725 | 1.09027 | 0.545133 | − | 0.838350i | \(-0.316479\pi\) | ||||
0.545133 | + | 0.838350i | \(0.316479\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 14.0000 | 1.88776 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | − 10.5830i | − 1.37779i | −0.724861 | − | 0.688895i | \(-0.758096\pi\) | ||||
0.724861 | − | 0.688895i | \(-0.241904\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 13.0000 | 1.66448 | 0.832240 | − | 0.554416i | \(-0.187058\pi\) | ||||
0.832240 | + | 0.554416i | \(0.187058\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 2.00000i | − 0.244339i | −0.992509 | − | 0.122169i | \(-0.961015\pi\) | ||||
0.992509 | − | 0.122169i | \(-0.0389851\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 5.29150i | 0.627986i | 0.949425 | + | 0.313993i | \(0.101667\pi\) | ||||
−0.949425 | + | 0.313993i | \(0.898333\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 7.00000i | 0.819288i | 0.912245 | + | 0.409644i | \(0.134347\pi\) | ||||
−0.912245 | + | 0.409644i | \(0.865653\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 10.5830 | 1.20605 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −4.00000 | −0.450035 | −0.225018 | − | 0.974355i | \(-0.572244\pi\) | ||||
−0.225018 | + | 0.974355i | \(0.572244\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − 15.8745i | − 1.74245i | −0.490881 | − | 0.871227i | \(-0.663325\pi\) | ||||
0.490881 | − | 0.871227i | \(-0.336675\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | − 21.0000i | − 2.27777i | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 15.8745 | 1.62869 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 2.00000i | 0.203069i | 0.994832 | + | 0.101535i | \(0.0323753\pi\) | ||||
−0.994832 | + | 0.101535i | \(0.967625\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 2.64575 | 0.263262 | 0.131631 | − | 0.991299i | \(-0.457979\pi\) | ||||
0.131631 | + | 0.991299i | \(0.457979\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 14.0000 | 1.37946 | 0.689730 | − | 0.724066i | \(-0.257729\pi\) | ||||
0.689730 | + | 0.724066i | \(0.257729\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −5.29150 | −0.511549 | −0.255774 | − | 0.966736i | \(-0.582330\pi\) | ||||
−0.255774 | + | 0.966736i | \(0.582330\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 10.0000i | 0.957826i | 0.877862 | + | 0.478913i | \(0.158969\pi\) | ||||
−0.877862 | + | 0.478913i | \(0.841031\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 2.64575 | 0.248891 | 0.124446 | − | 0.992226i | \(-0.460285\pi\) | ||||
0.124446 | + | 0.992226i | \(0.460285\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 14.0000i | 1.30551i | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | − 15.8745i | − 1.45521i | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −17.0000 | −1.54545 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 7.93725i | 0.709930i | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −16.0000 | −1.41977 | −0.709885 | − | 0.704317i | \(-0.751253\pi\) | ||||
−0.709885 | + | 0.704317i | \(0.751253\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 10.5830 | 0.924641 | 0.462321 | − | 0.886713i | \(-0.347017\pi\) | ||||
0.462321 | + | 0.886713i | \(0.347017\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 12.0000 | 1.04053 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 7.93725i | 0.678125i | 0.940764 | + | 0.339063i | \(0.110110\pi\) | ||||
−0.940764 | + | 0.339063i | \(0.889890\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 16.0000 | 1.35710 | 0.678551 | − | 0.734553i | \(-0.262608\pi\) | ||||
0.678551 | + | 0.734553i | \(0.262608\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 7.00000i | 0.581318i | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | − 7.93725i | − 0.650245i | −0.945672 | − | 0.325123i | \(-0.894594\pi\) | ||||
0.945672 | − | 0.325123i | \(-0.105406\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 18.0000i | 1.46482i | 0.680864 | + | 0.732410i | \(0.261604\pi\) | ||||
−0.680864 | + | 0.732410i | \(0.738396\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | −10.5830 | −0.850047 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 17.0000 | 1.35675 | 0.678374 | − | 0.734717i | \(-0.262685\pi\) | ||||
0.678374 | + | 0.734717i | \(0.262685\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 10.5830i | 0.834058i | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 4.00000i | 0.313304i | 0.987654 | + | 0.156652i | \(0.0500701\pi\) | ||||
−0.987654 | + | 0.156652i | \(0.949930\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 0 | 0 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −10.5830 | −0.804611 | −0.402305 | − | 0.915505i | \(-0.631791\pi\) | ||||
−0.402305 | + | 0.915505i | \(0.631791\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | − 4.00000i | − 0.302372i | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −15.8745 | −1.18652 | −0.593258 | − | 0.805012i | \(-0.702159\pi\) | ||||
−0.593258 | + | 0.805012i | \(0.702159\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 9.00000 | 0.668965 | 0.334482 | − | 0.942402i | \(-0.391439\pi\) | ||||
0.334482 | + | 0.942402i | \(0.391439\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | −7.93725 | −0.583559 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 42.0000i | 3.07134i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 21.1660 | 1.53152 | 0.765759 | − | 0.643127i | \(-0.222363\pi\) | ||||
0.765759 | + | 0.643127i | \(0.222363\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 25.0000i | 1.79954i | 0.436365 | + | 0.899770i | \(0.356266\pi\) | ||||
−0.436365 | + | 0.899770i | \(0.643734\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 10.0000 | 0.708881 | 0.354441 | − | 0.935079i | \(-0.384671\pi\) | ||||
0.354441 | + | 0.935079i | \(0.384671\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 5.29150i | 0.371391i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −21.0000 | −1.46670 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −31.7490 | −2.19613 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 8.00000 | 0.550743 | 0.275371 | − | 0.961338i | \(-0.411199\pi\) | ||||
0.275371 | + | 0.961338i | \(0.411199\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 5.29150i | 0.360877i | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −8.00000 | −0.543075 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | − 15.8745i | − 1.05363i | −0.849981 | − | 0.526814i | \(-0.823386\pi\) | ||||
0.849981 | − | 0.526814i | \(-0.176614\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | − 6.00000i | − 0.396491i | −0.980152 | − | 0.198246i | \(-0.936476\pi\) | ||||
0.980152 | − | 0.198246i | \(-0.0635244\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −21.1660 | −1.38663 | −0.693316 | − | 0.720634i | \(-0.743851\pi\) | ||||
−0.693316 | + | 0.720634i | \(0.743851\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 14.0000 | 0.913259 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 15.8745i | 1.02684i | 0.858138 | + | 0.513418i | \(0.171621\pi\) | ||||
−0.858138 | + | 0.513418i | \(0.828379\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | − 21.0000i | − 1.35273i | −0.736567 | − | 0.676364i | \(-0.763554\pi\) | ||||
0.736567 | − | 0.676364i | \(-0.236446\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 7.93725i | 0.507093i | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | − 28.0000i | − 1.76034i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −7.93725 | −0.495112 | −0.247556 | − | 0.968874i | \(-0.579627\pi\) | ||||
−0.247556 | + | 0.968874i | \(0.579627\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −6.00000 | −0.372822 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 15.8745 | 0.978864 | 0.489432 | − | 0.872041i | \(-0.337204\pi\) | ||||
0.489432 | + | 0.872041i | \(0.337204\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 21.0000i | 1.29002i | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −31.7490 | −1.93577 | −0.967886 | − | 0.251390i | \(-0.919112\pi\) | ||||
−0.967886 | + | 0.251390i | \(0.919112\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 8.00000i | 0.485965i | 0.970031 | + | 0.242983i | \(0.0781258\pi\) | ||||
−0.970031 | + | 0.242983i | \(0.921874\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 10.5830i | 0.638179i | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 9.00000 | 0.540758 | 0.270379 | − | 0.962754i | \(-0.412851\pi\) | ||||
0.270379 | + | 0.962754i | \(0.412851\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | − 13.2288i | − 0.789161i | −0.918861 | − | 0.394581i | \(-0.870890\pi\) | ||||
0.918861 | − | 0.394581i | \(-0.129110\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 14.0000 | 0.832214 | 0.416107 | − | 0.909316i | \(-0.363394\pi\) | ||||
0.416107 | + | 0.909316i | \(0.363394\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | −15.8745 | −0.937043 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 46.0000 | 2.70588 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 18.5203i | 1.08197i | 0.841034 | + | 0.540983i | \(0.181948\pi\) | ||||
−0.841034 | + | 0.540983i | \(0.818052\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 28.0000 | 1.63022 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 4.00000i | 0.230556i | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 34.3948i | 1.96944i | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 2.00000i | − 0.114146i | −0.998370 | − | 0.0570730i | \(-0.981823\pi\) | ||||
0.998370 | − | 0.0570730i | \(-0.0181768\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 15.8745 | 0.900161 | 0.450080 | − | 0.892988i | \(-0.351395\pi\) | ||||
0.450080 | + | 0.892988i | \(0.351395\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 14.0000 | 0.791327 | 0.395663 | − | 0.918396i | \(-0.370515\pi\) | ||||
0.395663 | + | 0.918396i | \(0.370515\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 7.93725i | 0.445801i | 0.974841 | + | 0.222900i | \(0.0715524\pi\) | ||||
−0.974841 | + | 0.222900i | \(0.928448\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | − 14.0000i | − 0.783850i | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 47.6235i | 2.64984i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 10.5830 | 0.583460 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 20.0000i | 1.09930i | 0.835395 | + | 0.549650i | \(0.185239\pi\) | ||||
−0.835395 | + | 0.549650i | \(0.814761\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 5.29150 | 0.289106 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −5.00000 | −0.272367 | −0.136184 | − | 0.990684i | \(-0.543484\pi\) | ||||
−0.136184 | + | 0.990684i | \(0.543484\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 21.1660 | 1.14620 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 20.0000i | 1.07990i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 15.8745 | 0.852188 | 0.426094 | − | 0.904679i | \(-0.359889\pi\) | ||||
0.426094 | + | 0.904679i | \(0.359889\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 2.00000i | 0.107058i | 0.998566 | + | 0.0535288i | \(0.0170469\pi\) | ||||
−0.998566 | + | 0.0535288i | \(0.982953\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 13.2288i | 0.704096i | 0.935982 | + | 0.352048i | \(0.114515\pi\) | ||||
−0.935982 | + | 0.352048i | \(0.885485\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | −14.0000 | −0.743043 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 15.8745i | 0.837824i | 0.908027 | + | 0.418912i | \(0.137589\pi\) | ||||
−0.908027 | + | 0.418912i | \(0.862411\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −17.0000 | −0.894737 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | −18.5203 | −0.969395 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 14.0000 | 0.730794 | 0.365397 | − | 0.930852i | \(-0.380933\pi\) | ||||
0.365397 | + | 0.930852i | \(0.380933\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 15.8745i | 0.824163i | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 17.0000 | 0.880227 | 0.440113 | − | 0.897942i | \(-0.354938\pi\) | ||||
0.440113 | + | 0.897942i | \(0.354938\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | − 20.0000i | − 1.02733i | −0.857991 | − | 0.513665i | \(-0.828287\pi\) | ||||
0.857991 | − | 0.513665i | \(-0.171713\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 28.0000i | 1.42701i | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 7.93725 | 0.402435 | 0.201217 | − | 0.979547i | \(-0.435510\pi\) | ||||
0.201217 | + | 0.979547i | \(0.435510\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −42.0000 | −2.12403 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | − 10.5830i | − 0.532489i | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 14.0000i | − 0.702640i | −0.936255 | − | 0.351320i | \(-0.885733\pi\) | ||||
0.936255 | − | 0.351320i | \(-0.114267\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | − 23.8118i | − 1.18910i | −0.804058 | − | 0.594551i | \(-0.797330\pi\) | ||||
0.804058 | − | 0.594551i | \(-0.202670\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 15.8745 | 0.786870 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | − 35.0000i | − 1.73064i | −0.501221 | − | 0.865319i | \(-0.667116\pi\) | ||||
0.501221 | − | 0.865319i | \(-0.332884\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 21.1660 | 1.04151 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 42.0000 | 2.06170 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −31.7490 | −1.55104 | −0.775520 | − | 0.631322i | \(-0.782512\pi\) | ||||
−0.775520 | + | 0.631322i | \(0.782512\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | − 29.0000i | − 1.41337i | −0.707527 | − | 0.706687i | \(-0.750189\pi\) | ||||
0.707527 | − | 0.706687i | \(-0.249811\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 15.8745 | 0.770027 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 26.0000i | 1.25823i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | − 15.8745i | − 0.764648i | −0.924028 | − | 0.382324i | \(-0.875124\pi\) | ||||
0.924028 | − | 0.382324i | \(-0.124876\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −19.0000 | −0.913082 | −0.456541 | − | 0.889702i | \(-0.650912\pi\) | ||||
−0.456541 | + | 0.889702i | \(0.650912\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | − 31.7490i | − 1.51876i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 22.0000 | 1.05000 | 0.525001 | − | 0.851101i | \(-0.324065\pi\) | ||||
0.525001 | + | 0.851101i | \(0.324065\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 31.7490 | 1.50844 | 0.754221 | − | 0.656621i | \(-0.228015\pi\) | ||||
0.754221 | + | 0.656621i | \(0.228015\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | − 21.1660i | − 0.998886i | −0.866347 | − | 0.499443i | \(-0.833538\pi\) | ||||
0.866347 | − | 0.499443i | \(-0.166462\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 42.0000 | 1.97770 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 25.0000i | 1.16945i | 0.811231 | + | 0.584725i | \(0.198798\pi\) | ||||
−0.811231 | + | 0.584725i | \(0.801202\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | − 23.8118i | − 1.10902i | −0.832176 | − | 0.554512i | \(-0.812905\pi\) | ||||
0.832176 | − | 0.554512i | \(-0.187095\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 26.0000i | 1.20832i | 0.796862 | + | 0.604161i | \(0.206492\pi\) | ||||
−0.796862 | + | 0.604161i | \(0.793508\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 5.29150 | 0.244862 | 0.122431 | − | 0.992477i | \(-0.460931\pi\) | ||||
0.122431 | + | 0.992477i | \(0.460931\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 4.00000 | 0.184703 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | − 10.5830i | − 0.486607i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 12.0000i | 0.550598i | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | − 31.7490i | − 1.45065i | −0.688407 | − | 0.725325i | \(-0.741690\pi\) | ||||
0.688407 | − | 0.725325i | \(-0.258310\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | −5.29150 | −0.240275 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 2.00000i | 0.0906287i | 0.998973 | + | 0.0453143i | \(0.0144289\pi\) | ||||
−0.998973 | + | 0.0453143i | \(0.985571\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −37.0405 | −1.67162 | −0.835808 | − | 0.549022i | \(-0.815000\pi\) | ||||
−0.835808 | + | 0.549022i | \(0.815000\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −21.0000 | −0.945792 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −10.5830 | −0.474713 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 4.00000i | 0.179065i | 0.995984 | + | 0.0895323i | \(0.0285372\pi\) | ||||
−0.995984 | + | 0.0895323i | \(0.971463\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −26.4575 | −1.17968 | −0.589841 | − | 0.807519i | \(-0.700810\pi\) | ||||
−0.589841 | + | 0.807519i | \(0.700810\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 7.00000i | 0.311496i | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | − 34.3948i | − 1.52452i | −0.647270 | − | 0.762261i | \(-0.724089\pi\) | ||||
0.647270 | − | 0.762261i | \(-0.275911\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −14.0000 | −0.619324 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 37.0405i | 1.63220i | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | −28.0000 | −1.23144 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 39.6863 | 1.73869 | 0.869344 | − | 0.494208i | \(-0.164542\pi\) | ||||
0.869344 | + | 0.494208i | \(0.164542\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −6.00000 | −0.262362 | −0.131181 | − | 0.991358i | \(-0.541877\pi\) | ||||
−0.131181 | + | 0.991358i | \(0.541877\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | − 31.7490i | − 1.38301i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 5.00000 | 0.217391 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | − 14.0000i | − 0.605273i | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | − 15.8745i | − 0.683763i | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 13.0000i | 0.558914i | 0.960158 | + | 0.279457i | \(0.0901544\pi\) | ||||
−0.960158 | + | 0.279457i | \(0.909846\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −26.4575 | −1.13332 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 34.0000 | 1.45374 | 0.726868 | − | 0.686778i | \(-0.240975\pi\) | ||||
0.726868 | + | 0.686778i | \(0.240975\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | − 15.8745i | − 0.676277i | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | − 8.00000i | − 0.340195i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 7.93725i | − 0.336312i | −0.985760 | − | 0.168156i | \(-0.946219\pi\) | ||||
0.985760 | − | 0.168156i | \(-0.0537813\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −42.3320 | −1.78408 | −0.892041 | − | 0.451955i | \(-0.850727\pi\) | ||||
−0.892041 | + | 0.451955i | \(0.850727\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 7.00000i | 0.294492i | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 10.5830 | 0.443663 | 0.221831 | − | 0.975085i | \(-0.428797\pi\) | ||||
0.221831 | + | 0.975085i | \(0.428797\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 30.0000 | 1.25546 | 0.627730 | − | 0.778431i | \(-0.283984\pi\) | ||||
0.627730 | + | 0.778431i | \(0.283984\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −10.5830 | −0.441342 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 3.00000i | 0.124892i | 0.998048 | + | 0.0624458i | \(0.0198901\pi\) | ||||
−0.998048 | + | 0.0624458i | \(0.980110\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 31.7490 | 1.31717 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | − 42.0000i | − 1.73946i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 10.5830i | 0.436807i | 0.975859 | + | 0.218404i | \(0.0700850\pi\) | ||||
−0.975859 | + | 0.218404i | \(0.929915\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 24.0000 | 0.988903 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 29.1033i | 1.19513i | 0.801821 | + | 0.597564i | \(0.203865\pi\) | ||||
−0.801821 | + | 0.597564i | \(0.796135\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 42.0000 | 1.72183 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 21.1660 | 0.864820 | 0.432410 | − | 0.901677i | \(-0.357663\pi\) | ||||
0.432410 | + | 0.901677i | \(0.357663\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 19.0000 | 0.775026 | 0.387513 | − | 0.921864i | \(-0.373334\pi\) | ||||
0.387513 | + | 0.921864i | \(0.373334\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | − 44.9778i | − 1.82861i | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −36.0000 | −1.46119 | −0.730597 | − | 0.682808i | \(-0.760758\pi\) | ||||
−0.730597 | + | 0.682808i | \(0.760758\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 5.00000i | 0.201948i | 0.994889 | + | 0.100974i | \(0.0321959\pi\) | ||||
−0.994889 | + | 0.100974i | \(0.967804\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − 2.64575i | − 0.106514i | −0.998581 | − | 0.0532570i | \(-0.983040\pi\) | ||||
0.998581 | − | 0.0532570i | \(-0.0169602\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | − 28.0000i | − 1.12542i | −0.826656 | − | 0.562708i | \(-0.809760\pi\) | ||||
0.826656 | − | 0.562708i | \(-0.190240\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −31.0000 | −1.24000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | − 23.8118i | − 0.949437i | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 8.00000i | 0.318475i | 0.987240 | + | 0.159237i | \(0.0509036\pi\) | ||||
−0.987240 | + | 0.159237i | \(0.949096\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | − 42.3320i | − 1.67990i | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 18.5203 | 0.731506 | 0.365753 | − | 0.930712i | \(-0.380811\pi\) | ||||
0.365753 | + | 0.930712i | \(0.380811\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 28.0000i | − 1.10421i | −0.833774 | − | 0.552106i | \(-0.813824\pi\) | ||||
0.833774 | − | 0.552106i | \(-0.186176\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 42.3320 | 1.66424 | 0.832122 | − | 0.554593i | \(-0.187126\pi\) | ||||
0.832122 | + | 0.554593i | \(0.187126\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −56.0000 | −2.19819 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 31.7490 | 1.24243 | 0.621217 | − | 0.783638i | \(-0.286638\pi\) | ||||
0.621217 | + | 0.783638i | \(0.286638\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 28.0000i | 1.09405i | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −31.7490 | −1.23677 | −0.618383 | − | 0.785877i | \(-0.712212\pi\) | ||||
−0.618383 | + | 0.785877i | \(0.712212\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 31.0000i | 1.20576i | 0.797832 | + | 0.602880i | \(0.205980\pi\) | ||||
−0.797832 | + | 0.602880i | \(0.794020\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 31.7490i | 1.23117i | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 14.0000 | 0.542082 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | − 68.7895i | − 2.65559i | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −19.0000 | −0.732396 | −0.366198 | − | 0.930537i | \(-0.619341\pi\) | ||||
−0.366198 | + | 0.930537i | \(0.619341\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 31.7490 | 1.22021 | 0.610107 | − | 0.792319i | \(-0.291126\pi\) | ||||
0.610107 | + | 0.792319i | \(0.291126\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −4.00000 | −0.153506 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 42.3320i | 1.61979i | 0.586575 | + | 0.809895i | \(0.300476\pi\) | ||||
−0.586575 | + | 0.809895i | \(0.699524\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −21.0000 | −0.802369 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | − 14.0000i | − 0.532585i | −0.963892 | − | 0.266293i | \(-0.914201\pi\) | ||||
0.963892 | − | 0.266293i | \(-0.0857987\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 42.3320i | 1.60575i | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − 63.0000i | − 2.38630i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 31.7490 | 1.19914 | 0.599572 | − | 0.800321i | \(-0.295338\pi\) | ||||
0.599572 | + | 0.800321i | \(0.295338\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 18.0000 | 0.678883 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 5.29150i | 0.199007i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | − 11.0000i | − 0.413114i | −0.978435 | − | 0.206557i | \(-0.933774\pi\) | ||||
0.978435 | − | 0.206557i | \(-0.0662258\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 21.1660i | 0.792673i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −10.5830 | −0.394679 | −0.197340 | − | 0.980335i | \(-0.563230\pi\) | ||||
−0.197340 | + | 0.980335i | \(0.563230\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 28.0000i | 1.04277i | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | −5.29150 | −0.196521 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 2.00000 | 0.0741759 | 0.0370879 | − | 0.999312i | \(-0.488192\pi\) | ||||
0.0370879 | + | 0.999312i | \(0.488192\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −15.8745 | −0.587140 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − 1.00000i | − 0.0369358i | −0.999829 | − | 0.0184679i | \(-0.994121\pi\) | ||||
0.999829 | − | 0.0184679i | \(-0.00587886\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −10.5830 | −0.389830 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | − 12.0000i | − 0.441427i | −0.975339 | − | 0.220714i | \(-0.929161\pi\) | ||||
0.975339 | − | 0.220714i | \(-0.0708386\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 21.1660i | 0.776506i | 0.921553 | + | 0.388253i | \(0.126921\pi\) | ||||
−0.921553 | + | 0.388253i | \(0.873079\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 21.0000 | 0.769380 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | − 10.5830i | − 0.386695i | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −18.0000 | −0.656829 | −0.328415 | − | 0.944534i | \(-0.606514\pi\) | ||||
−0.328415 | + | 0.944534i | \(0.606514\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | −47.6235 | −1.73320 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −30.0000 | −1.09037 | −0.545184 | − | 0.838316i | \(-0.683540\pi\) | ||||
−0.545184 | + | 0.838316i | \(0.683540\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −20.0000 | −0.724049 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 30.0000i | 1.08183i | 0.841078 | + | 0.540914i | \(0.181921\pi\) | ||||
−0.841078 | + | 0.540914i | \(0.818079\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 10.5830i | 0.380644i | 0.981722 | + | 0.190322i | \(0.0609532\pi\) | ||||
−0.981722 | + | 0.190322i | \(0.939047\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | − 8.00000i | − 0.287368i | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 47.6235 | 1.70629 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 28.0000 | 1.00192 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 44.9778i | 1.60533i | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 52.0000i | 1.85360i | 0.375555 | + | 0.926800i | \(0.377452\pi\) | ||||
−0.375555 | + | 0.926800i | \(0.622548\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 5.29150i | 0.188144i | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 42.0000i | 1.48585i | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 37.0405 | 1.30713 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | −28.0000 | −0.986870 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 23.8118 | 0.837177 | 0.418588 | − | 0.908176i | \(-0.362525\pi\) | ||||
0.418588 | + | 0.908176i | \(0.362525\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | − 16.0000i | − 0.561836i | −0.959732 | − | 0.280918i | \(-0.909361\pi\) | ||||
0.959732 | − | 0.280918i | \(-0.0906389\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | −10.5830 | −0.370707 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | − 12.0000i | − 0.419827i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 10.5830i | 0.369349i | 0.982800 | + | 0.184675i | \(0.0591232\pi\) | ||||
−0.982800 | + | 0.184675i | \(0.940877\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 24.0000 | 0.836587 | 0.418294 | − | 0.908312i | \(-0.362628\pi\) | ||||
0.418294 | + | 0.908312i | \(0.362628\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −7.00000 | −0.243120 | −0.121560 | − | 0.992584i | \(-0.538790\pi\) | ||||
−0.121560 | + | 0.992584i | \(0.538790\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −23.8118 | −0.825029 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | − 10.5830i | − 0.365366i | −0.983172 | − | 0.182683i | \(-0.941522\pi\) | ||||
0.983172 | − | 0.182683i | \(-0.0584782\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −22.0000 | −0.758621 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 34.0000i | − 1.16825i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 15.8745i | 0.544171i | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 47.0000i | 1.60925i | 0.593784 | + | 0.804625i | \(0.297633\pi\) | ||||
−0.593784 | + | 0.804625i | \(0.702367\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 34.3948 | 1.17490 | 0.587451 | − | 0.809259i | \(-0.300131\pi\) | ||||
0.587451 | + | 0.809259i | \(0.300131\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −22.0000 | −0.750630 | −0.375315 | − | 0.926897i | \(-0.622466\pi\) | ||||
−0.375315 | + | 0.926897i | \(0.622466\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 5.29150i | 0.180125i | 0.995936 | + | 0.0900624i | \(0.0287067\pi\) | ||||
−0.995936 | + | 0.0900624i | \(0.971293\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | − 28.0000i | − 0.952029i | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 21.1660i | 0.718008i | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | −15.8745 | −0.536656 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − 27.0000i | − 0.911725i | −0.890050 | − | 0.455863i | \(-0.849331\pi\) | ||||
0.890050 | − | 0.455863i | \(-0.150669\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 7.93725 | 0.267413 | 0.133706 | − | 0.991021i | \(-0.457312\pi\) | ||||
0.133706 | + | 0.991021i | \(0.457312\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 44.0000 | 1.48072 | 0.740359 | − | 0.672212i | \(-0.234656\pi\) | ||||
0.740359 | + | 0.672212i | \(0.234656\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 52.9150 | 1.77671 | 0.888356 | − | 0.459155i | \(-0.151848\pi\) | ||||
0.888356 | + | 0.459155i | \(0.151848\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | − 32.0000i | − 1.07325i | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −31.7490 | −1.06244 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | − 42.0000i | − 1.40391i | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 10.5830i | 0.352963i | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −63.0000 | −2.09883 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 23.8118i | 0.791530i | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 12.0000 | 0.398453 | 0.199227 | − | 0.979953i | \(-0.436157\pi\) | ||||
0.199227 | + | 0.979953i | \(0.436157\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −31.7490 | −1.05189 | −0.525946 | − | 0.850518i | \(-0.676289\pi\) | ||||
−0.525946 | + | 0.850518i | \(0.676289\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −84.0000 | −2.77999 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 21.1660i | 0.698963i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −24.0000 | −0.791687 | −0.395843 | − | 0.918318i | \(-0.629548\pi\) | ||||
−0.395843 | + | 0.918318i | \(0.629548\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | − 6.00000i | − 0.197279i | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | − 7.93725i | − 0.260413i | −0.991487 | − | 0.130206i | \(-0.958436\pi\) | ||||
0.991487 | − | 0.130206i | \(-0.0415640\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | − 18.0000i | − 0.589926i | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | −111.122 | −3.63406 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −9.00000 | −0.294017 | −0.147009 | − | 0.989135i | \(-0.546964\pi\) | ||||
−0.147009 | + | 0.989135i | \(0.546964\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | − 10.5830i | − 0.344996i | −0.985010 | − | 0.172498i | \(-0.944816\pi\) | ||||
0.985010 | − | 0.172498i | \(-0.0551839\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 42.0000i | 1.36771i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −10.5830 | −0.342817 | −0.171409 | − | 0.985200i | \(-0.554832\pi\) | ||||
−0.171409 | + | 0.985200i | \(0.554832\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 56.0000i | 1.81212i | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −15.8745 | −0.512615 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 15.0000 | 0.483871 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | −66.1438 | −2.12924 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 22.0000i | − 0.707472i | −0.935345 | − | 0.353736i | \(-0.884911\pi\) | ||||
0.935345 | − | 0.353736i | \(-0.115089\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 31.7490 | 1.01887 | 0.509437 | − | 0.860508i | \(-0.329854\pi\) | ||||
0.509437 | + | 0.860508i | \(0.329854\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 32.0000i | 1.02587i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | − 39.6863i | − 1.26968i | −0.772645 | − | 0.634838i | \(-0.781067\pi\) | ||||
0.772645 | − | 0.634838i | \(-0.218933\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 10.5830i | − 0.337545i | −0.985655 | − | 0.168773i | \(-0.946020\pi\) | ||||
0.985655 | − | 0.168773i | \(-0.0539804\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 10.5830 | 0.336520 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −54.0000 | −1.71537 | −0.857683 | − | 0.514178i | \(-0.828097\pi\) | ||||
−0.857683 | + | 0.514178i | \(0.828097\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 26.4575i | 0.838760i | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | −7.00000 | −0.221692 | −0.110846 | − | 0.993838i | \(-0.535356\pi\) | ||||
−0.110846 | + | 0.993838i | \(0.535356\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 6084.2.b.n.4393.4 | 4 | ||
3.2 | odd | 2 | inner | 6084.2.b.n.4393.2 | 4 | ||
13.2 | odd | 12 | 468.2.l.e.217.2 | yes | 4 | ||
13.5 | odd | 4 | 6084.2.a.q.1.2 | 2 | |||
13.6 | odd | 12 | 468.2.l.e.289.2 | yes | 4 | ||
13.8 | odd | 4 | 6084.2.a.w.1.1 | 2 | |||
13.12 | even | 2 | inner | 6084.2.b.n.4393.1 | 4 | ||
39.2 | even | 12 | 468.2.l.e.217.1 | ✓ | 4 | ||
39.5 | even | 4 | 6084.2.a.q.1.1 | 2 | |||
39.8 | even | 4 | 6084.2.a.w.1.2 | 2 | |||
39.32 | even | 12 | 468.2.l.e.289.1 | yes | 4 | ||
39.38 | odd | 2 | inner | 6084.2.b.n.4393.3 | 4 | ||
52.15 | even | 12 | 1872.2.t.o.1153.2 | 4 | |||
52.19 | even | 12 | 1872.2.t.o.289.2 | 4 | |||
156.71 | odd | 12 | 1872.2.t.o.289.1 | 4 | |||
156.119 | odd | 12 | 1872.2.t.o.1153.1 | 4 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
468.2.l.e.217.1 | ✓ | 4 | 39.2 | even | 12 | ||
468.2.l.e.217.2 | yes | 4 | 13.2 | odd | 12 | ||
468.2.l.e.289.1 | yes | 4 | 39.32 | even | 12 | ||
468.2.l.e.289.2 | yes | 4 | 13.6 | odd | 12 | ||
1872.2.t.o.289.1 | 4 | 156.71 | odd | 12 | |||
1872.2.t.o.289.2 | 4 | 52.19 | even | 12 | |||
1872.2.t.o.1153.1 | 4 | 156.119 | odd | 12 | |||
1872.2.t.o.1153.2 | 4 | 52.15 | even | 12 | |||
6084.2.a.q.1.1 | 2 | 39.5 | even | 4 | |||
6084.2.a.q.1.2 | 2 | 13.5 | odd | 4 | |||
6084.2.a.w.1.1 | 2 | 13.8 | odd | 4 | |||
6084.2.a.w.1.2 | 2 | 39.8 | even | 4 | |||
6084.2.b.n.4393.1 | 4 | 13.12 | even | 2 | inner | ||
6084.2.b.n.4393.2 | 4 | 3.2 | odd | 2 | inner | ||
6084.2.b.n.4393.3 | 4 | 39.38 | odd | 2 | inner | ||
6084.2.b.n.4393.4 | 4 | 1.1 | even | 1 | trivial |