Properties

Label 6084.2.b.n.4393.4
Level $6084$
Weight $2$
Character 6084.4393
Analytic conductor $48.581$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6084,2,Mod(4393,6084)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6084, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6084.4393");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6084 = 2^{2} \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6084.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.5809845897\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 3x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 468)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4393.4
Root \(1.32288 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 6084.4393
Dual form 6084.2.b.n.4393.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.64575i q^{5} +2.00000i q^{7} -5.29150i q^{11} -7.93725 q^{17} -6.00000i q^{19} +5.29150 q^{23} -2.00000 q^{25} +2.64575 q^{29} +4.00000i q^{31} -5.29150 q^{35} +3.00000i q^{37} +7.93725i q^{41} +2.00000 q^{43} -5.29150i q^{47} +3.00000 q^{49} +7.93725 q^{53} +14.0000 q^{55} -10.5830i q^{59} +13.0000 q^{61} -2.00000i q^{67} +5.29150i q^{71} +7.00000i q^{73} +10.5830 q^{77} -4.00000 q^{79} -15.8745i q^{83} -21.0000i q^{85} +15.8745 q^{95} +2.00000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{25} + 8 q^{43} + 12 q^{49} + 56 q^{55} + 52 q^{61} - 16 q^{79}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6084\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(3043\) \(3889\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.64575i 1.18322i 0.806226 + 0.591608i \(0.201507\pi\)
−0.806226 + 0.591608i \(0.798493\pi\)
\(6\) 0 0
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 5.29150i − 1.59545i −0.603023 0.797724i \(-0.706037\pi\)
0.603023 0.797724i \(-0.293963\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −7.93725 −1.92507 −0.962533 0.271163i \(-0.912592\pi\)
−0.962533 + 0.271163i \(0.912592\pi\)
\(18\) 0 0
\(19\) − 6.00000i − 1.37649i −0.725476 0.688247i \(-0.758380\pi\)
0.725476 0.688247i \(-0.241620\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.29150 1.10335 0.551677 0.834058i \(-0.313988\pi\)
0.551677 + 0.834058i \(0.313988\pi\)
\(24\) 0 0
\(25\) −2.00000 −0.400000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.64575 0.491304 0.245652 0.969358i \(-0.420998\pi\)
0.245652 + 0.969358i \(0.420998\pi\)
\(30\) 0 0
\(31\) 4.00000i 0.718421i 0.933257 + 0.359211i \(0.116954\pi\)
−0.933257 + 0.359211i \(0.883046\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.29150 −0.894427
\(36\) 0 0
\(37\) 3.00000i 0.493197i 0.969118 + 0.246598i \(0.0793129\pi\)
−0.969118 + 0.246598i \(0.920687\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.93725i 1.23959i 0.784763 + 0.619795i \(0.212784\pi\)
−0.784763 + 0.619795i \(0.787216\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 5.29150i − 0.771845i −0.922531 0.385922i \(-0.873883\pi\)
0.922531 0.385922i \(-0.126117\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.93725 1.09027 0.545133 0.838350i \(-0.316479\pi\)
0.545133 + 0.838350i \(0.316479\pi\)
\(54\) 0 0
\(55\) 14.0000 1.88776
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 10.5830i − 1.37779i −0.724861 0.688895i \(-0.758096\pi\)
0.724861 0.688895i \(-0.241904\pi\)
\(60\) 0 0
\(61\) 13.0000 1.66448 0.832240 0.554416i \(-0.187058\pi\)
0.832240 + 0.554416i \(0.187058\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 2.00000i − 0.244339i −0.992509 0.122169i \(-0.961015\pi\)
0.992509 0.122169i \(-0.0389851\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.29150i 0.627986i 0.949425 + 0.313993i \(0.101667\pi\)
−0.949425 + 0.313993i \(0.898333\pi\)
\(72\) 0 0
\(73\) 7.00000i 0.819288i 0.912245 + 0.409644i \(0.134347\pi\)
−0.912245 + 0.409644i \(0.865653\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 10.5830 1.20605
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 15.8745i − 1.74245i −0.490881 0.871227i \(-0.663325\pi\)
0.490881 0.871227i \(-0.336675\pi\)
\(84\) 0 0
\(85\) − 21.0000i − 2.27777i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 15.8745 1.62869
\(96\) 0 0
\(97\) 2.00000i 0.203069i 0.994832 + 0.101535i \(0.0323753\pi\)
−0.994832 + 0.101535i \(0.967625\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.64575 0.263262 0.131631 0.991299i \(-0.457979\pi\)
0.131631 + 0.991299i \(0.457979\pi\)
\(102\) 0 0
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.29150 −0.511549 −0.255774 0.966736i \(-0.582330\pi\)
−0.255774 + 0.966736i \(0.582330\pi\)
\(108\) 0 0
\(109\) 10.0000i 0.957826i 0.877862 + 0.478913i \(0.158969\pi\)
−0.877862 + 0.478913i \(0.841031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.64575 0.248891 0.124446 0.992226i \(-0.460285\pi\)
0.124446 + 0.992226i \(0.460285\pi\)
\(114\) 0 0
\(115\) 14.0000i 1.30551i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 15.8745i − 1.45521i
\(120\) 0 0
\(121\) −17.0000 −1.54545
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 7.93725i 0.709930i
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.5830 0.924641 0.462321 0.886713i \(-0.347017\pi\)
0.462321 + 0.886713i \(0.347017\pi\)
\(132\) 0 0
\(133\) 12.0000 1.04053
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.93725i 0.678125i 0.940764 + 0.339063i \(0.110110\pi\)
−0.940764 + 0.339063i \(0.889890\pi\)
\(138\) 0 0
\(139\) 16.0000 1.35710 0.678551 0.734553i \(-0.262608\pi\)
0.678551 + 0.734553i \(0.262608\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 7.00000i 0.581318i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 7.93725i − 0.650245i −0.945672 0.325123i \(-0.894594\pi\)
0.945672 0.325123i \(-0.105406\pi\)
\(150\) 0 0
\(151\) 18.0000i 1.46482i 0.680864 + 0.732410i \(0.261604\pi\)
−0.680864 + 0.732410i \(0.738396\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10.5830 −0.850047
\(156\) 0 0
\(157\) 17.0000 1.35675 0.678374 0.734717i \(-0.262685\pi\)
0.678374 + 0.734717i \(0.262685\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.5830i 0.834058i
\(162\) 0 0
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.5830 −0.804611 −0.402305 0.915505i \(-0.631791\pi\)
−0.402305 + 0.915505i \(0.631791\pi\)
\(174\) 0 0
\(175\) − 4.00000i − 0.302372i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −15.8745 −1.18652 −0.593258 0.805012i \(-0.702159\pi\)
−0.593258 + 0.805012i \(0.702159\pi\)
\(180\) 0 0
\(181\) 9.00000 0.668965 0.334482 0.942402i \(-0.391439\pi\)
0.334482 + 0.942402i \(0.391439\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −7.93725 −0.583559
\(186\) 0 0
\(187\) 42.0000i 3.07134i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 21.1660 1.53152 0.765759 0.643127i \(-0.222363\pi\)
0.765759 + 0.643127i \(0.222363\pi\)
\(192\) 0 0
\(193\) 25.0000i 1.79954i 0.436365 + 0.899770i \(0.356266\pi\)
−0.436365 + 0.899770i \(0.643734\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 10.0000 0.708881 0.354441 0.935079i \(-0.384671\pi\)
0.354441 + 0.935079i \(0.384671\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.29150i 0.371391i
\(204\) 0 0
\(205\) −21.0000 −1.46670
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −31.7490 −2.19613
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.29150i 0.360877i
\(216\) 0 0
\(217\) −8.00000 −0.543075
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 15.8745i − 1.05363i −0.849981 0.526814i \(-0.823386\pi\)
0.849981 0.526814i \(-0.176614\pi\)
\(228\) 0 0
\(229\) − 6.00000i − 0.396491i −0.980152 0.198246i \(-0.936476\pi\)
0.980152 0.198246i \(-0.0635244\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −21.1660 −1.38663 −0.693316 0.720634i \(-0.743851\pi\)
−0.693316 + 0.720634i \(0.743851\pi\)
\(234\) 0 0
\(235\) 14.0000 0.913259
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 15.8745i 1.02684i 0.858138 + 0.513418i \(0.171621\pi\)
−0.858138 + 0.513418i \(0.828379\pi\)
\(240\) 0 0
\(241\) − 21.0000i − 1.35273i −0.736567 0.676364i \(-0.763554\pi\)
0.736567 0.676364i \(-0.236446\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 7.93725i 0.507093i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) − 28.0000i − 1.76034i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.93725 −0.495112 −0.247556 0.968874i \(-0.579627\pi\)
−0.247556 + 0.968874i \(0.579627\pi\)
\(258\) 0 0
\(259\) −6.00000 −0.372822
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 15.8745 0.978864 0.489432 0.872041i \(-0.337204\pi\)
0.489432 + 0.872041i \(0.337204\pi\)
\(264\) 0 0
\(265\) 21.0000i 1.29002i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −31.7490 −1.93577 −0.967886 0.251390i \(-0.919112\pi\)
−0.967886 + 0.251390i \(0.919112\pi\)
\(270\) 0 0
\(271\) 8.00000i 0.485965i 0.970031 + 0.242983i \(0.0781258\pi\)
−0.970031 + 0.242983i \(0.921874\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 10.5830i 0.638179i
\(276\) 0 0
\(277\) 9.00000 0.540758 0.270379 0.962754i \(-0.412851\pi\)
0.270379 + 0.962754i \(0.412851\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 13.2288i − 0.789161i −0.918861 0.394581i \(-0.870890\pi\)
0.918861 0.394581i \(-0.129110\pi\)
\(282\) 0 0
\(283\) 14.0000 0.832214 0.416107 0.909316i \(-0.363394\pi\)
0.416107 + 0.909316i \(0.363394\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −15.8745 −0.937043
\(288\) 0 0
\(289\) 46.0000 2.70588
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 18.5203i 1.08197i 0.841034 + 0.540983i \(0.181948\pi\)
−0.841034 + 0.540983i \(0.818052\pi\)
\(294\) 0 0
\(295\) 28.0000 1.63022
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 4.00000i 0.230556i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 34.3948i 1.96944i
\(306\) 0 0
\(307\) − 2.00000i − 0.114146i −0.998370 0.0570730i \(-0.981823\pi\)
0.998370 0.0570730i \(-0.0181768\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 15.8745 0.900161 0.450080 0.892988i \(-0.351395\pi\)
0.450080 + 0.892988i \(0.351395\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.93725i 0.445801i 0.974841 + 0.222900i \(0.0715524\pi\)
−0.974841 + 0.222900i \(0.928448\pi\)
\(318\) 0 0
\(319\) − 14.0000i − 0.783850i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 47.6235i 2.64984i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 10.5830 0.583460
\(330\) 0 0
\(331\) 20.0000i 1.09930i 0.835395 + 0.549650i \(0.185239\pi\)
−0.835395 + 0.549650i \(0.814761\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.29150 0.289106
\(336\) 0 0
\(337\) −5.00000 −0.272367 −0.136184 0.990684i \(-0.543484\pi\)
−0.136184 + 0.990684i \(0.543484\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 21.1660 1.14620
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 15.8745 0.852188 0.426094 0.904679i \(-0.359889\pi\)
0.426094 + 0.904679i \(0.359889\pi\)
\(348\) 0 0
\(349\) 2.00000i 0.107058i 0.998566 + 0.0535288i \(0.0170469\pi\)
−0.998566 + 0.0535288i \(0.982953\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 13.2288i 0.704096i 0.935982 + 0.352048i \(0.114515\pi\)
−0.935982 + 0.352048i \(0.885485\pi\)
\(354\) 0 0
\(355\) −14.0000 −0.743043
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.8745i 0.837824i 0.908027 + 0.418912i \(0.137589\pi\)
−0.908027 + 0.418912i \(0.862411\pi\)
\(360\) 0 0
\(361\) −17.0000 −0.894737
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −18.5203 −0.969395
\(366\) 0 0
\(367\) 14.0000 0.730794 0.365397 0.930852i \(-0.380933\pi\)
0.365397 + 0.930852i \(0.380933\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 15.8745i 0.824163i
\(372\) 0 0
\(373\) 17.0000 0.880227 0.440113 0.897942i \(-0.354938\pi\)
0.440113 + 0.897942i \(0.354938\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 20.0000i − 1.02733i −0.857991 0.513665i \(-0.828287\pi\)
0.857991 0.513665i \(-0.171713\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 28.0000i 1.42701i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.93725 0.402435 0.201217 0.979547i \(-0.435510\pi\)
0.201217 + 0.979547i \(0.435510\pi\)
\(390\) 0 0
\(391\) −42.0000 −2.12403
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 10.5830i − 0.532489i
\(396\) 0 0
\(397\) − 14.0000i − 0.702640i −0.936255 0.351320i \(-0.885733\pi\)
0.936255 0.351320i \(-0.114267\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 23.8118i − 1.18910i −0.804058 0.594551i \(-0.797330\pi\)
0.804058 0.594551i \(-0.202670\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 15.8745 0.786870
\(408\) 0 0
\(409\) − 35.0000i − 1.73064i −0.501221 0.865319i \(-0.667116\pi\)
0.501221 0.865319i \(-0.332884\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 21.1660 1.04151
\(414\) 0 0
\(415\) 42.0000 2.06170
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −31.7490 −1.55104 −0.775520 0.631322i \(-0.782512\pi\)
−0.775520 + 0.631322i \(0.782512\pi\)
\(420\) 0 0
\(421\) − 29.0000i − 1.41337i −0.707527 0.706687i \(-0.750189\pi\)
0.707527 0.706687i \(-0.249811\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 15.8745 0.770027
\(426\) 0 0
\(427\) 26.0000i 1.25823i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 15.8745i − 0.764648i −0.924028 0.382324i \(-0.875124\pi\)
0.924028 0.382324i \(-0.124876\pi\)
\(432\) 0 0
\(433\) −19.0000 −0.913082 −0.456541 0.889702i \(-0.650912\pi\)
−0.456541 + 0.889702i \(0.650912\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 31.7490i − 1.51876i
\(438\) 0 0
\(439\) 22.0000 1.05000 0.525001 0.851101i \(-0.324065\pi\)
0.525001 + 0.851101i \(0.324065\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 31.7490 1.50844 0.754221 0.656621i \(-0.228015\pi\)
0.754221 + 0.656621i \(0.228015\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 21.1660i − 0.998886i −0.866347 0.499443i \(-0.833538\pi\)
0.866347 0.499443i \(-0.166462\pi\)
\(450\) 0 0
\(451\) 42.0000 1.97770
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 25.0000i 1.16945i 0.811231 + 0.584725i \(0.198798\pi\)
−0.811231 + 0.584725i \(0.801202\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 23.8118i − 1.10902i −0.832176 0.554512i \(-0.812905\pi\)
0.832176 0.554512i \(-0.187095\pi\)
\(462\) 0 0
\(463\) 26.0000i 1.20832i 0.796862 + 0.604161i \(0.206492\pi\)
−0.796862 + 0.604161i \(0.793508\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.29150 0.244862 0.122431 0.992477i \(-0.460931\pi\)
0.122431 + 0.992477i \(0.460931\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 10.5830i − 0.486607i
\(474\) 0 0
\(475\) 12.0000i 0.550598i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 31.7490i − 1.45065i −0.688407 0.725325i \(-0.741690\pi\)
0.688407 0.725325i \(-0.258310\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5.29150 −0.240275
\(486\) 0 0
\(487\) 2.00000i 0.0906287i 0.998973 + 0.0453143i \(0.0144289\pi\)
−0.998973 + 0.0453143i \(0.985571\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −37.0405 −1.67162 −0.835808 0.549022i \(-0.815000\pi\)
−0.835808 + 0.549022i \(0.815000\pi\)
\(492\) 0 0
\(493\) −21.0000 −0.945792
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −10.5830 −0.474713
\(498\) 0 0
\(499\) 4.00000i 0.179065i 0.995984 + 0.0895323i \(0.0285372\pi\)
−0.995984 + 0.0895323i \(0.971463\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −26.4575 −1.17968 −0.589841 0.807519i \(-0.700810\pi\)
−0.589841 + 0.807519i \(0.700810\pi\)
\(504\) 0 0
\(505\) 7.00000i 0.311496i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 34.3948i − 1.52452i −0.647270 0.762261i \(-0.724089\pi\)
0.647270 0.762261i \(-0.275911\pi\)
\(510\) 0 0
\(511\) −14.0000 −0.619324
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 37.0405i 1.63220i
\(516\) 0 0
\(517\) −28.0000 −1.23144
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 39.6863 1.73869 0.869344 0.494208i \(-0.164542\pi\)
0.869344 + 0.494208i \(0.164542\pi\)
\(522\) 0 0
\(523\) −6.00000 −0.262362 −0.131181 0.991358i \(-0.541877\pi\)
−0.131181 + 0.991358i \(0.541877\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 31.7490i − 1.38301i
\(528\) 0 0
\(529\) 5.00000 0.217391
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 14.0000i − 0.605273i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 15.8745i − 0.683763i
\(540\) 0 0
\(541\) 13.0000i 0.558914i 0.960158 + 0.279457i \(0.0901544\pi\)
−0.960158 + 0.279457i \(0.909846\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −26.4575 −1.13332
\(546\) 0 0
\(547\) 34.0000 1.45374 0.726868 0.686778i \(-0.240975\pi\)
0.726868 + 0.686778i \(0.240975\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 15.8745i − 0.676277i
\(552\) 0 0
\(553\) − 8.00000i − 0.340195i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 7.93725i − 0.336312i −0.985760 0.168156i \(-0.946219\pi\)
0.985760 0.168156i \(-0.0537813\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −42.3320 −1.78408 −0.892041 0.451955i \(-0.850727\pi\)
−0.892041 + 0.451955i \(0.850727\pi\)
\(564\) 0 0
\(565\) 7.00000i 0.294492i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10.5830 0.443663 0.221831 0.975085i \(-0.428797\pi\)
0.221831 + 0.975085i \(0.428797\pi\)
\(570\) 0 0
\(571\) 30.0000 1.25546 0.627730 0.778431i \(-0.283984\pi\)
0.627730 + 0.778431i \(0.283984\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −10.5830 −0.441342
\(576\) 0 0
\(577\) 3.00000i 0.124892i 0.998048 + 0.0624458i \(0.0198901\pi\)
−0.998048 + 0.0624458i \(0.980110\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 31.7490 1.31717
\(582\) 0 0
\(583\) − 42.0000i − 1.73946i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.5830i 0.436807i 0.975859 + 0.218404i \(0.0700850\pi\)
−0.975859 + 0.218404i \(0.929915\pi\)
\(588\) 0 0
\(589\) 24.0000 0.988903
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 29.1033i 1.19513i 0.801821 + 0.597564i \(0.203865\pi\)
−0.801821 + 0.597564i \(0.796135\pi\)
\(594\) 0 0
\(595\) 42.0000 1.72183
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 21.1660 0.864820 0.432410 0.901677i \(-0.357663\pi\)
0.432410 + 0.901677i \(0.357663\pi\)
\(600\) 0 0
\(601\) 19.0000 0.775026 0.387513 0.921864i \(-0.373334\pi\)
0.387513 + 0.921864i \(0.373334\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 44.9778i − 1.82861i
\(606\) 0 0
\(607\) −36.0000 −1.46119 −0.730597 0.682808i \(-0.760758\pi\)
−0.730597 + 0.682808i \(0.760758\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 5.00000i 0.201948i 0.994889 + 0.100974i \(0.0321959\pi\)
−0.994889 + 0.100974i \(0.967804\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 2.64575i − 0.106514i −0.998581 0.0532570i \(-0.983040\pi\)
0.998581 0.0532570i \(-0.0169602\pi\)
\(618\) 0 0
\(619\) − 28.0000i − 1.12542i −0.826656 0.562708i \(-0.809760\pi\)
0.826656 0.562708i \(-0.190240\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 23.8118i − 0.949437i
\(630\) 0 0
\(631\) 8.00000i 0.318475i 0.987240 + 0.159237i \(0.0509036\pi\)
−0.987240 + 0.159237i \(0.949096\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 42.3320i − 1.67990i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 18.5203 0.731506 0.365753 0.930712i \(-0.380811\pi\)
0.365753 + 0.930712i \(0.380811\pi\)
\(642\) 0 0
\(643\) − 28.0000i − 1.10421i −0.833774 0.552106i \(-0.813824\pi\)
0.833774 0.552106i \(-0.186176\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 42.3320 1.66424 0.832122 0.554593i \(-0.187126\pi\)
0.832122 + 0.554593i \(0.187126\pi\)
\(648\) 0 0
\(649\) −56.0000 −2.19819
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 31.7490 1.24243 0.621217 0.783638i \(-0.286638\pi\)
0.621217 + 0.783638i \(0.286638\pi\)
\(654\) 0 0
\(655\) 28.0000i 1.09405i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −31.7490 −1.23677 −0.618383 0.785877i \(-0.712212\pi\)
−0.618383 + 0.785877i \(0.712212\pi\)
\(660\) 0 0
\(661\) 31.0000i 1.20576i 0.797832 + 0.602880i \(0.205980\pi\)
−0.797832 + 0.602880i \(0.794020\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 31.7490i 1.23117i
\(666\) 0 0
\(667\) 14.0000 0.542082
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 68.7895i − 2.65559i
\(672\) 0 0
\(673\) −19.0000 −0.732396 −0.366198 0.930537i \(-0.619341\pi\)
−0.366198 + 0.930537i \(0.619341\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 31.7490 1.22021 0.610107 0.792319i \(-0.291126\pi\)
0.610107 + 0.792319i \(0.291126\pi\)
\(678\) 0 0
\(679\) −4.00000 −0.153506
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 42.3320i 1.61979i 0.586575 + 0.809895i \(0.300476\pi\)
−0.586575 + 0.809895i \(0.699524\pi\)
\(684\) 0 0
\(685\) −21.0000 −0.802369
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 14.0000i − 0.532585i −0.963892 0.266293i \(-0.914201\pi\)
0.963892 0.266293i \(-0.0857987\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 42.3320i 1.60575i
\(696\) 0 0
\(697\) − 63.0000i − 2.38630i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 31.7490 1.19914 0.599572 0.800321i \(-0.295338\pi\)
0.599572 + 0.800321i \(0.295338\pi\)
\(702\) 0 0
\(703\) 18.0000 0.678883
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.29150i 0.199007i
\(708\) 0 0
\(709\) − 11.0000i − 0.413114i −0.978435 0.206557i \(-0.933774\pi\)
0.978435 0.206557i \(-0.0662258\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 21.1660i 0.792673i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −10.5830 −0.394679 −0.197340 0.980335i \(-0.563230\pi\)
−0.197340 + 0.980335i \(0.563230\pi\)
\(720\) 0 0
\(721\) 28.0000i 1.04277i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.29150 −0.196521
\(726\) 0 0
\(727\) 2.00000 0.0741759 0.0370879 0.999312i \(-0.488192\pi\)
0.0370879 + 0.999312i \(0.488192\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −15.8745 −0.587140
\(732\) 0 0
\(733\) − 1.00000i − 0.0369358i −0.999829 0.0184679i \(-0.994121\pi\)
0.999829 0.0184679i \(-0.00587886\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −10.5830 −0.389830
\(738\) 0 0
\(739\) − 12.0000i − 0.441427i −0.975339 0.220714i \(-0.929161\pi\)
0.975339 0.220714i \(-0.0708386\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21.1660i 0.776506i 0.921553 + 0.388253i \(0.126921\pi\)
−0.921553 + 0.388253i \(0.873079\pi\)
\(744\) 0 0
\(745\) 21.0000 0.769380
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 10.5830i − 0.386695i
\(750\) 0 0
\(751\) −18.0000 −0.656829 −0.328415 0.944534i \(-0.606514\pi\)
−0.328415 + 0.944534i \(0.606514\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −47.6235 −1.73320
\(756\) 0 0
\(757\) −30.0000 −1.09037 −0.545184 0.838316i \(-0.683540\pi\)
−0.545184 + 0.838316i \(0.683540\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) −20.0000 −0.724049
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 30.0000i 1.08183i 0.841078 + 0.540914i \(0.181921\pi\)
−0.841078 + 0.540914i \(0.818079\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 10.5830i 0.380644i 0.981722 + 0.190322i \(0.0609532\pi\)
−0.981722 + 0.190322i \(0.939047\pi\)
\(774\) 0 0
\(775\) − 8.00000i − 0.287368i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 47.6235 1.70629
\(780\) 0 0
\(781\) 28.0000 1.00192
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 44.9778i 1.60533i
\(786\) 0 0
\(787\) 52.0000i 1.85360i 0.375555 + 0.926800i \(0.377452\pi\)
−0.375555 + 0.926800i \(0.622548\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 5.29150i 0.188144i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 42.0000i 1.48585i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 37.0405 1.30713
\(804\) 0 0
\(805\) −28.0000 −0.986870
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 23.8118 0.837177 0.418588 0.908176i \(-0.362525\pi\)
0.418588 + 0.908176i \(0.362525\pi\)
\(810\) 0 0
\(811\) − 16.0000i − 0.561836i −0.959732 0.280918i \(-0.909361\pi\)
0.959732 0.280918i \(-0.0906389\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −10.5830 −0.370707
\(816\) 0 0
\(817\) − 12.0000i − 0.419827i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.5830i 0.369349i 0.982800 + 0.184675i \(0.0591232\pi\)
−0.982800 + 0.184675i \(0.940877\pi\)
\(822\) 0 0
\(823\) 24.0000 0.836587 0.418294 0.908312i \(-0.362628\pi\)
0.418294 + 0.908312i \(0.362628\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) −7.00000 −0.243120 −0.121560 0.992584i \(-0.538790\pi\)
−0.121560 + 0.992584i \(0.538790\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −23.8118 −0.825029
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 10.5830i − 0.365366i −0.983172 0.182683i \(-0.941522\pi\)
0.983172 0.182683i \(-0.0584782\pi\)
\(840\) 0 0
\(841\) −22.0000 −0.758621
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 34.0000i − 1.16825i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 15.8745i 0.544171i
\(852\) 0 0
\(853\) 47.0000i 1.60925i 0.593784 + 0.804625i \(0.297633\pi\)
−0.593784 + 0.804625i \(0.702367\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 34.3948 1.17490 0.587451 0.809259i \(-0.300131\pi\)
0.587451 + 0.809259i \(0.300131\pi\)
\(858\) 0 0
\(859\) −22.0000 −0.750630 −0.375315 0.926897i \(-0.622466\pi\)
−0.375315 + 0.926897i \(0.622466\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 5.29150i 0.180125i 0.995936 + 0.0900624i \(0.0287067\pi\)
−0.995936 + 0.0900624i \(0.971293\pi\)
\(864\) 0 0
\(865\) − 28.0000i − 0.952029i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 21.1660i 0.718008i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −15.8745 −0.536656
\(876\) 0 0
\(877\) − 27.0000i − 0.911725i −0.890050 0.455863i \(-0.849331\pi\)
0.890050 0.455863i \(-0.150669\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.93725 0.267413 0.133706 0.991021i \(-0.457312\pi\)
0.133706 + 0.991021i \(0.457312\pi\)
\(882\) 0 0
\(883\) 44.0000 1.48072 0.740359 0.672212i \(-0.234656\pi\)
0.740359 + 0.672212i \(0.234656\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 52.9150 1.77671 0.888356 0.459155i \(-0.151848\pi\)
0.888356 + 0.459155i \(0.151848\pi\)
\(888\) 0 0
\(889\) − 32.0000i − 1.07325i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −31.7490 −1.06244
\(894\) 0 0
\(895\) − 42.0000i − 1.40391i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 10.5830i 0.352963i
\(900\) 0 0
\(901\) −63.0000 −2.09883
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 23.8118i 0.791530i
\(906\) 0 0
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −31.7490 −1.05189 −0.525946 0.850518i \(-0.676289\pi\)
−0.525946 + 0.850518i \(0.676289\pi\)
\(912\) 0 0
\(913\) −84.0000 −2.77999
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 21.1660i 0.698963i
\(918\) 0 0
\(919\) −24.0000 −0.791687 −0.395843 0.918318i \(-0.629548\pi\)
−0.395843 + 0.918318i \(0.629548\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) − 6.00000i − 0.197279i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 7.93725i − 0.260413i −0.991487 0.130206i \(-0.958436\pi\)
0.991487 0.130206i \(-0.0415640\pi\)
\(930\) 0 0
\(931\) − 18.0000i − 0.589926i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −111.122 −3.63406
\(936\) 0 0
\(937\) −9.00000 −0.294017 −0.147009 0.989135i \(-0.546964\pi\)
−0.147009 + 0.989135i \(0.546964\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 10.5830i − 0.344996i −0.985010 0.172498i \(-0.944816\pi\)
0.985010 0.172498i \(-0.0551839\pi\)
\(942\) 0 0
\(943\) 42.0000i 1.36771i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −10.5830 −0.342817 −0.171409 0.985200i \(-0.554832\pi\)
−0.171409 + 0.985200i \(0.554832\pi\)
\(954\) 0 0
\(955\) 56.0000i 1.81212i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −15.8745 −0.512615
\(960\) 0 0
\(961\) 15.0000 0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −66.1438 −2.12924
\(966\) 0 0
\(967\) − 22.0000i − 0.707472i −0.935345 0.353736i \(-0.884911\pi\)
0.935345 0.353736i \(-0.115089\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 31.7490 1.01887 0.509437 0.860508i \(-0.329854\pi\)
0.509437 + 0.860508i \(0.329854\pi\)
\(972\) 0 0
\(973\) 32.0000i 1.02587i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 39.6863i − 1.26968i −0.772645 0.634838i \(-0.781067\pi\)
0.772645 0.634838i \(-0.218933\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 10.5830i − 0.337545i −0.985655 0.168773i \(-0.946020\pi\)
0.985655 0.168773i \(-0.0539804\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 10.5830 0.336520
\(990\) 0 0
\(991\) −54.0000 −1.71537 −0.857683 0.514178i \(-0.828097\pi\)
−0.857683 + 0.514178i \(0.828097\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 26.4575i 0.838760i
\(996\) 0 0
\(997\) −7.00000 −0.221692 −0.110846 0.993838i \(-0.535356\pi\)
−0.110846 + 0.993838i \(0.535356\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6084.2.b.n.4393.4 4
3.2 odd 2 inner 6084.2.b.n.4393.2 4
13.2 odd 12 468.2.l.e.217.2 yes 4
13.5 odd 4 6084.2.a.q.1.2 2
13.6 odd 12 468.2.l.e.289.2 yes 4
13.8 odd 4 6084.2.a.w.1.1 2
13.12 even 2 inner 6084.2.b.n.4393.1 4
39.2 even 12 468.2.l.e.217.1 4
39.5 even 4 6084.2.a.q.1.1 2
39.8 even 4 6084.2.a.w.1.2 2
39.32 even 12 468.2.l.e.289.1 yes 4
39.38 odd 2 inner 6084.2.b.n.4393.3 4
52.15 even 12 1872.2.t.o.1153.2 4
52.19 even 12 1872.2.t.o.289.2 4
156.71 odd 12 1872.2.t.o.289.1 4
156.119 odd 12 1872.2.t.o.1153.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.l.e.217.1 4 39.2 even 12
468.2.l.e.217.2 yes 4 13.2 odd 12
468.2.l.e.289.1 yes 4 39.32 even 12
468.2.l.e.289.2 yes 4 13.6 odd 12
1872.2.t.o.289.1 4 156.71 odd 12
1872.2.t.o.289.2 4 52.19 even 12
1872.2.t.o.1153.1 4 156.119 odd 12
1872.2.t.o.1153.2 4 52.15 even 12
6084.2.a.q.1.1 2 39.5 even 4
6084.2.a.q.1.2 2 13.5 odd 4
6084.2.a.w.1.1 2 13.8 odd 4
6084.2.a.w.1.2 2 39.8 even 4
6084.2.b.n.4393.1 4 13.12 even 2 inner
6084.2.b.n.4393.2 4 3.2 odd 2 inner
6084.2.b.n.4393.3 4 39.38 odd 2 inner
6084.2.b.n.4393.4 4 1.1 even 1 trivial