Properties

Label 6084.2.a.w.1.2
Level $6084$
Weight $2$
Character 6084.1
Self dual yes
Analytic conductor $48.581$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6084,2,Mod(1,6084)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6084, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6084.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6084 = 2^{2} \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6084.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.5809845897\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 468)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.64575\) of defining polynomial
Character \(\chi\) \(=\) 6084.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.64575 q^{5} +2.00000 q^{7} +5.29150 q^{11} -7.93725 q^{17} +6.00000 q^{19} +5.29150 q^{23} +2.00000 q^{25} -2.64575 q^{29} -4.00000 q^{31} +5.29150 q^{35} +3.00000 q^{37} +7.93725 q^{41} -2.00000 q^{43} +5.29150 q^{47} -3.00000 q^{49} -7.93725 q^{53} +14.0000 q^{55} +10.5830 q^{59} +13.0000 q^{61} +2.00000 q^{67} +5.29150 q^{71} +7.00000 q^{73} +10.5830 q^{77} -4.00000 q^{79} -15.8745 q^{83} -21.0000 q^{85} +15.8745 q^{95} -2.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{7} + 12 q^{19} + 4 q^{25} - 8 q^{31} + 6 q^{37} - 4 q^{43} - 6 q^{49} + 28 q^{55} + 26 q^{61} + 4 q^{67} + 14 q^{73} - 8 q^{79} - 42 q^{85} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.64575 1.18322 0.591608 0.806226i \(-0.298493\pi\)
0.591608 + 0.806226i \(0.298493\pi\)
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.29150 1.59545 0.797724 0.603023i \(-0.206037\pi\)
0.797724 + 0.603023i \(0.206037\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −7.93725 −1.92507 −0.962533 0.271163i \(-0.912592\pi\)
−0.962533 + 0.271163i \(0.912592\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.29150 1.10335 0.551677 0.834058i \(-0.313988\pi\)
0.551677 + 0.834058i \(0.313988\pi\)
\(24\) 0 0
\(25\) 2.00000 0.400000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.64575 −0.491304 −0.245652 0.969358i \(-0.579002\pi\)
−0.245652 + 0.969358i \(0.579002\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.29150 0.894427
\(36\) 0 0
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.93725 1.23959 0.619795 0.784763i \(-0.287216\pi\)
0.619795 + 0.784763i \(0.287216\pi\)
\(42\) 0 0
\(43\) −2.00000 −0.304997 −0.152499 0.988304i \(-0.548732\pi\)
−0.152499 + 0.988304i \(0.548732\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.29150 0.771845 0.385922 0.922531i \(-0.373883\pi\)
0.385922 + 0.922531i \(0.373883\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.93725 −1.09027 −0.545133 0.838350i \(-0.683521\pi\)
−0.545133 + 0.838350i \(0.683521\pi\)
\(54\) 0 0
\(55\) 14.0000 1.88776
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.5830 1.37779 0.688895 0.724861i \(-0.258096\pi\)
0.688895 + 0.724861i \(0.258096\pi\)
\(60\) 0 0
\(61\) 13.0000 1.66448 0.832240 0.554416i \(-0.187058\pi\)
0.832240 + 0.554416i \(0.187058\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.29150 0.627986 0.313993 0.949425i \(-0.398333\pi\)
0.313993 + 0.949425i \(0.398333\pi\)
\(72\) 0 0
\(73\) 7.00000 0.819288 0.409644 0.912245i \(-0.365653\pi\)
0.409644 + 0.912245i \(0.365653\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 10.5830 1.20605
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −15.8745 −1.74245 −0.871227 0.490881i \(-0.836675\pi\)
−0.871227 + 0.490881i \(0.836675\pi\)
\(84\) 0 0
\(85\) −21.0000 −2.27777
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 15.8745 1.62869
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.64575 0.263262 0.131631 0.991299i \(-0.457979\pi\)
0.131631 + 0.991299i \(0.457979\pi\)
\(102\) 0 0
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.29150 0.511549 0.255774 0.966736i \(-0.417670\pi\)
0.255774 + 0.966736i \(0.417670\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.64575 −0.248891 −0.124446 0.992226i \(-0.539715\pi\)
−0.124446 + 0.992226i \(0.539715\pi\)
\(114\) 0 0
\(115\) 14.0000 1.30551
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −15.8745 −1.45521
\(120\) 0 0
\(121\) 17.0000 1.54545
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.93725 −0.709930
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −10.5830 −0.924641 −0.462321 0.886713i \(-0.652983\pi\)
−0.462321 + 0.886713i \(0.652983\pi\)
\(132\) 0 0
\(133\) 12.0000 1.04053
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −7.93725 −0.678125 −0.339063 0.940764i \(-0.610110\pi\)
−0.339063 + 0.940764i \(0.610110\pi\)
\(138\) 0 0
\(139\) 16.0000 1.35710 0.678551 0.734553i \(-0.262608\pi\)
0.678551 + 0.734553i \(0.262608\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −7.00000 −0.581318
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.93725 −0.650245 −0.325123 0.945672i \(-0.605406\pi\)
−0.325123 + 0.945672i \(0.605406\pi\)
\(150\) 0 0
\(151\) 18.0000 1.46482 0.732410 0.680864i \(-0.238396\pi\)
0.732410 + 0.680864i \(0.238396\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10.5830 −0.850047
\(156\) 0 0
\(157\) 17.0000 1.35675 0.678374 0.734717i \(-0.262685\pi\)
0.678374 + 0.734717i \(0.262685\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.5830 0.834058
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.5830 −0.804611 −0.402305 0.915505i \(-0.631791\pi\)
−0.402305 + 0.915505i \(0.631791\pi\)
\(174\) 0 0
\(175\) 4.00000 0.302372
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −15.8745 −1.18652 −0.593258 0.805012i \(-0.702159\pi\)
−0.593258 + 0.805012i \(0.702159\pi\)
\(180\) 0 0
\(181\) −9.00000 −0.668965 −0.334482 0.942402i \(-0.608561\pi\)
−0.334482 + 0.942402i \(0.608561\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.93725 0.583559
\(186\) 0 0
\(187\) −42.0000 −3.07134
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −21.1660 −1.53152 −0.765759 0.643127i \(-0.777637\pi\)
−0.765759 + 0.643127i \(0.777637\pi\)
\(192\) 0 0
\(193\) 25.0000 1.79954 0.899770 0.436365i \(-0.143734\pi\)
0.899770 + 0.436365i \(0.143734\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −5.29150 −0.371391
\(204\) 0 0
\(205\) 21.0000 1.46670
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 31.7490 2.19613
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.29150 −0.360877
\(216\) 0 0
\(217\) −8.00000 −0.543075
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −15.8745 −1.05363 −0.526814 0.849981i \(-0.676614\pi\)
−0.526814 + 0.849981i \(0.676614\pi\)
\(228\) 0 0
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −21.1660 −1.38663 −0.693316 0.720634i \(-0.743851\pi\)
−0.693316 + 0.720634i \(0.743851\pi\)
\(234\) 0 0
\(235\) 14.0000 0.913259
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 15.8745 1.02684 0.513418 0.858138i \(-0.328379\pi\)
0.513418 + 0.858138i \(0.328379\pi\)
\(240\) 0 0
\(241\) −21.0000 −1.35273 −0.676364 0.736567i \(-0.736446\pi\)
−0.676364 + 0.736567i \(0.736446\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −7.93725 −0.507093
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 28.0000 1.76034
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.93725 −0.495112 −0.247556 0.968874i \(-0.579627\pi\)
−0.247556 + 0.968874i \(0.579627\pi\)
\(258\) 0 0
\(259\) 6.00000 0.372822
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −15.8745 −0.978864 −0.489432 0.872041i \(-0.662796\pi\)
−0.489432 + 0.872041i \(0.662796\pi\)
\(264\) 0 0
\(265\) −21.0000 −1.29002
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 31.7490 1.93577 0.967886 0.251390i \(-0.0808877\pi\)
0.967886 + 0.251390i \(0.0808877\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 10.5830 0.638179
\(276\) 0 0
\(277\) −9.00000 −0.540758 −0.270379 0.962754i \(-0.587149\pi\)
−0.270379 + 0.962754i \(0.587149\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 13.2288 0.789161 0.394581 0.918861i \(-0.370890\pi\)
0.394581 + 0.918861i \(0.370890\pi\)
\(282\) 0 0
\(283\) −14.0000 −0.832214 −0.416107 0.909316i \(-0.636606\pi\)
−0.416107 + 0.909316i \(0.636606\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 15.8745 0.937043
\(288\) 0 0
\(289\) 46.0000 2.70588
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −18.5203 −1.08197 −0.540983 0.841034i \(-0.681948\pi\)
−0.540983 + 0.841034i \(0.681948\pi\)
\(294\) 0 0
\(295\) 28.0000 1.63022
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 34.3948 1.96944
\(306\) 0 0
\(307\) −2.00000 −0.114146 −0.0570730 0.998370i \(-0.518177\pi\)
−0.0570730 + 0.998370i \(0.518177\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 15.8745 0.900161 0.450080 0.892988i \(-0.351395\pi\)
0.450080 + 0.892988i \(0.351395\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.93725 0.445801 0.222900 0.974841i \(-0.428448\pi\)
0.222900 + 0.974841i \(0.428448\pi\)
\(318\) 0 0
\(319\) −14.0000 −0.783850
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −47.6235 −2.64984
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 10.5830 0.583460
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.29150 0.289106
\(336\) 0 0
\(337\) 5.00000 0.272367 0.136184 0.990684i \(-0.456516\pi\)
0.136184 + 0.990684i \(0.456516\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −21.1660 −1.14620
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −15.8745 −0.852188 −0.426094 0.904679i \(-0.640111\pi\)
−0.426094 + 0.904679i \(0.640111\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 13.2288 0.704096 0.352048 0.935982i \(-0.385485\pi\)
0.352048 + 0.935982i \(0.385485\pi\)
\(354\) 0 0
\(355\) 14.0000 0.743043
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −15.8745 −0.837824 −0.418912 0.908027i \(-0.637589\pi\)
−0.418912 + 0.908027i \(0.637589\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 18.5203 0.969395
\(366\) 0 0
\(367\) 14.0000 0.730794 0.365397 0.930852i \(-0.380933\pi\)
0.365397 + 0.930852i \(0.380933\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −15.8745 −0.824163
\(372\) 0 0
\(373\) 17.0000 0.880227 0.440113 0.897942i \(-0.354938\pi\)
0.440113 + 0.897942i \(0.354938\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 28.0000 1.42701
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.93725 0.402435 0.201217 0.979547i \(-0.435510\pi\)
0.201217 + 0.979547i \(0.435510\pi\)
\(390\) 0 0
\(391\) −42.0000 −2.12403
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −10.5830 −0.532489
\(396\) 0 0
\(397\) −14.0000 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 23.8118 1.18910 0.594551 0.804058i \(-0.297330\pi\)
0.594551 + 0.804058i \(0.297330\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 15.8745 0.786870
\(408\) 0 0
\(409\) 35.0000 1.73064 0.865319 0.501221i \(-0.167116\pi\)
0.865319 + 0.501221i \(0.167116\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 21.1660 1.04151
\(414\) 0 0
\(415\) −42.0000 −2.06170
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 31.7490 1.55104 0.775520 0.631322i \(-0.217488\pi\)
0.775520 + 0.631322i \(0.217488\pi\)
\(420\) 0 0
\(421\) 29.0000 1.41337 0.706687 0.707527i \(-0.250189\pi\)
0.706687 + 0.707527i \(0.250189\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −15.8745 −0.770027
\(426\) 0 0
\(427\) 26.0000 1.25823
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −15.8745 −0.764648 −0.382324 0.924028i \(-0.624876\pi\)
−0.382324 + 0.924028i \(0.624876\pi\)
\(432\) 0 0
\(433\) 19.0000 0.913082 0.456541 0.889702i \(-0.349088\pi\)
0.456541 + 0.889702i \(0.349088\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 31.7490 1.51876
\(438\) 0 0
\(439\) −22.0000 −1.05000 −0.525001 0.851101i \(-0.675935\pi\)
−0.525001 + 0.851101i \(0.675935\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −31.7490 −1.50844 −0.754221 0.656621i \(-0.771985\pi\)
−0.754221 + 0.656621i \(0.771985\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 21.1660 0.998886 0.499443 0.866347i \(-0.333538\pi\)
0.499443 + 0.866347i \(0.333538\pi\)
\(450\) 0 0
\(451\) 42.0000 1.97770
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −25.0000 −1.16945 −0.584725 0.811231i \(-0.698798\pi\)
−0.584725 + 0.811231i \(0.698798\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −23.8118 −1.10902 −0.554512 0.832176i \(-0.687095\pi\)
−0.554512 + 0.832176i \(0.687095\pi\)
\(462\) 0 0
\(463\) 26.0000 1.20832 0.604161 0.796862i \(-0.293508\pi\)
0.604161 + 0.796862i \(0.293508\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.29150 0.244862 0.122431 0.992477i \(-0.460931\pi\)
0.122431 + 0.992477i \(0.460931\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −10.5830 −0.486607
\(474\) 0 0
\(475\) 12.0000 0.550598
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 31.7490 1.45065 0.725325 0.688407i \(-0.241690\pi\)
0.725325 + 0.688407i \(0.241690\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5.29150 −0.240275
\(486\) 0 0
\(487\) −2.00000 −0.0906287 −0.0453143 0.998973i \(-0.514429\pi\)
−0.0453143 + 0.998973i \(0.514429\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −37.0405 −1.67162 −0.835808 0.549022i \(-0.815000\pi\)
−0.835808 + 0.549022i \(0.815000\pi\)
\(492\) 0 0
\(493\) 21.0000 0.945792
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.5830 0.474713
\(498\) 0 0
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 26.4575 1.17968 0.589841 0.807519i \(-0.299190\pi\)
0.589841 + 0.807519i \(0.299190\pi\)
\(504\) 0 0
\(505\) 7.00000 0.311496
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −34.3948 −1.52452 −0.762261 0.647270i \(-0.775911\pi\)
−0.762261 + 0.647270i \(0.775911\pi\)
\(510\) 0 0
\(511\) 14.0000 0.619324
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −37.0405 −1.63220
\(516\) 0 0
\(517\) 28.0000 1.23144
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −39.6863 −1.73869 −0.869344 0.494208i \(-0.835458\pi\)
−0.869344 + 0.494208i \(0.835458\pi\)
\(522\) 0 0
\(523\) −6.00000 −0.262362 −0.131181 0.991358i \(-0.541877\pi\)
−0.131181 + 0.991358i \(0.541877\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 31.7490 1.38301
\(528\) 0 0
\(529\) 5.00000 0.217391
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 14.0000 0.605273
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −15.8745 −0.683763
\(540\) 0 0
\(541\) 13.0000 0.558914 0.279457 0.960158i \(-0.409846\pi\)
0.279457 + 0.960158i \(0.409846\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −26.4575 −1.13332
\(546\) 0 0
\(547\) 34.0000 1.45374 0.726868 0.686778i \(-0.240975\pi\)
0.726868 + 0.686778i \(0.240975\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −15.8745 −0.676277
\(552\) 0 0
\(553\) −8.00000 −0.340195
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.93725 0.336312 0.168156 0.985760i \(-0.446219\pi\)
0.168156 + 0.985760i \(0.446219\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −42.3320 −1.78408 −0.892041 0.451955i \(-0.850727\pi\)
−0.892041 + 0.451955i \(0.850727\pi\)
\(564\) 0 0
\(565\) −7.00000 −0.294492
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10.5830 0.443663 0.221831 0.975085i \(-0.428797\pi\)
0.221831 + 0.975085i \(0.428797\pi\)
\(570\) 0 0
\(571\) −30.0000 −1.25546 −0.627730 0.778431i \(-0.716016\pi\)
−0.627730 + 0.778431i \(0.716016\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 10.5830 0.441342
\(576\) 0 0
\(577\) −3.00000 −0.124892 −0.0624458 0.998048i \(-0.519890\pi\)
−0.0624458 + 0.998048i \(0.519890\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −31.7490 −1.31717
\(582\) 0 0
\(583\) −42.0000 −1.73946
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.5830 0.436807 0.218404 0.975859i \(-0.429915\pi\)
0.218404 + 0.975859i \(0.429915\pi\)
\(588\) 0 0
\(589\) −24.0000 −0.988903
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −29.1033 −1.19513 −0.597564 0.801821i \(-0.703865\pi\)
−0.597564 + 0.801821i \(0.703865\pi\)
\(594\) 0 0
\(595\) −42.0000 −1.72183
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −21.1660 −0.864820 −0.432410 0.901677i \(-0.642337\pi\)
−0.432410 + 0.901677i \(0.642337\pi\)
\(600\) 0 0
\(601\) 19.0000 0.775026 0.387513 0.921864i \(-0.373334\pi\)
0.387513 + 0.921864i \(0.373334\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 44.9778 1.82861
\(606\) 0 0
\(607\) −36.0000 −1.46119 −0.730597 0.682808i \(-0.760758\pi\)
−0.730597 + 0.682808i \(0.760758\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −5.00000 −0.201948 −0.100974 0.994889i \(-0.532196\pi\)
−0.100974 + 0.994889i \(0.532196\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2.64575 −0.106514 −0.0532570 0.998581i \(-0.516960\pi\)
−0.0532570 + 0.998581i \(0.516960\pi\)
\(618\) 0 0
\(619\) −28.0000 −1.12542 −0.562708 0.826656i \(-0.690240\pi\)
−0.562708 + 0.826656i \(0.690240\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −23.8118 −0.949437
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 42.3320 1.67990
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 18.5203 0.731506 0.365753 0.930712i \(-0.380811\pi\)
0.365753 + 0.930712i \(0.380811\pi\)
\(642\) 0 0
\(643\) 28.0000 1.10421 0.552106 0.833774i \(-0.313824\pi\)
0.552106 + 0.833774i \(0.313824\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 42.3320 1.66424 0.832122 0.554593i \(-0.187126\pi\)
0.832122 + 0.554593i \(0.187126\pi\)
\(648\) 0 0
\(649\) 56.0000 2.19819
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −31.7490 −1.24243 −0.621217 0.783638i \(-0.713362\pi\)
−0.621217 + 0.783638i \(0.713362\pi\)
\(654\) 0 0
\(655\) −28.0000 −1.09405
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 31.7490 1.23677 0.618383 0.785877i \(-0.287788\pi\)
0.618383 + 0.785877i \(0.287788\pi\)
\(660\) 0 0
\(661\) 31.0000 1.20576 0.602880 0.797832i \(-0.294020\pi\)
0.602880 + 0.797832i \(0.294020\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 31.7490 1.23117
\(666\) 0 0
\(667\) −14.0000 −0.542082
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 68.7895 2.65559
\(672\) 0 0
\(673\) 19.0000 0.732396 0.366198 0.930537i \(-0.380659\pi\)
0.366198 + 0.930537i \(0.380659\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −31.7490 −1.22021 −0.610107 0.792319i \(-0.708874\pi\)
−0.610107 + 0.792319i \(0.708874\pi\)
\(678\) 0 0
\(679\) −4.00000 −0.153506
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −42.3320 −1.61979 −0.809895 0.586575i \(-0.800476\pi\)
−0.809895 + 0.586575i \(0.800476\pi\)
\(684\) 0 0
\(685\) −21.0000 −0.802369
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 14.0000 0.532585 0.266293 0.963892i \(-0.414201\pi\)
0.266293 + 0.963892i \(0.414201\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 42.3320 1.60575
\(696\) 0 0
\(697\) −63.0000 −2.38630
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 31.7490 1.19914 0.599572 0.800321i \(-0.295338\pi\)
0.599572 + 0.800321i \(0.295338\pi\)
\(702\) 0 0
\(703\) 18.0000 0.678883
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.29150 0.199007
\(708\) 0 0
\(709\) −11.0000 −0.413114 −0.206557 0.978435i \(-0.566226\pi\)
−0.206557 + 0.978435i \(0.566226\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −21.1660 −0.792673
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −10.5830 −0.394679 −0.197340 0.980335i \(-0.563230\pi\)
−0.197340 + 0.980335i \(0.563230\pi\)
\(720\) 0 0
\(721\) −28.0000 −1.04277
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.29150 −0.196521
\(726\) 0 0
\(727\) −2.00000 −0.0741759 −0.0370879 0.999312i \(-0.511808\pi\)
−0.0370879 + 0.999312i \(0.511808\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 15.8745 0.587140
\(732\) 0 0
\(733\) 1.00000 0.0369358 0.0184679 0.999829i \(-0.494121\pi\)
0.0184679 + 0.999829i \(0.494121\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.5830 0.389830
\(738\) 0 0
\(739\) −12.0000 −0.441427 −0.220714 0.975339i \(-0.570839\pi\)
−0.220714 + 0.975339i \(0.570839\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21.1660 0.776506 0.388253 0.921553i \(-0.373079\pi\)
0.388253 + 0.921553i \(0.373079\pi\)
\(744\) 0 0
\(745\) −21.0000 −0.769380
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10.5830 0.386695
\(750\) 0 0
\(751\) 18.0000 0.656829 0.328415 0.944534i \(-0.393486\pi\)
0.328415 + 0.944534i \(0.393486\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 47.6235 1.73320
\(756\) 0 0
\(757\) −30.0000 −1.09037 −0.545184 0.838316i \(-0.683540\pi\)
−0.545184 + 0.838316i \(0.683540\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) −20.0000 −0.724049
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −30.0000 −1.08183 −0.540914 0.841078i \(-0.681921\pi\)
−0.540914 + 0.841078i \(0.681921\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 10.5830 0.380644 0.190322 0.981722i \(-0.439047\pi\)
0.190322 + 0.981722i \(0.439047\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 47.6235 1.70629
\(780\) 0 0
\(781\) 28.0000 1.00192
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 44.9778 1.60533
\(786\) 0 0
\(787\) 52.0000 1.85360 0.926800 0.375555i \(-0.122548\pi\)
0.926800 + 0.375555i \(0.122548\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −5.29150 −0.188144
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) −42.0000 −1.48585
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 37.0405 1.30713
\(804\) 0 0
\(805\) 28.0000 0.986870
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −23.8118 −0.837177 −0.418588 0.908176i \(-0.637475\pi\)
−0.418588 + 0.908176i \(0.637475\pi\)
\(810\) 0 0
\(811\) 16.0000 0.561836 0.280918 0.959732i \(-0.409361\pi\)
0.280918 + 0.959732i \(0.409361\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 10.5830 0.370707
\(816\) 0 0
\(817\) −12.0000 −0.419827
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.5830 0.369349 0.184675 0.982800i \(-0.440877\pi\)
0.184675 + 0.982800i \(0.440877\pi\)
\(822\) 0 0
\(823\) −24.0000 −0.836587 −0.418294 0.908312i \(-0.637372\pi\)
−0.418294 + 0.908312i \(0.637372\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 7.00000 0.243120 0.121560 0.992584i \(-0.461210\pi\)
0.121560 + 0.992584i \(0.461210\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 23.8118 0.825029
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 10.5830 0.365366 0.182683 0.983172i \(-0.441522\pi\)
0.182683 + 0.983172i \(0.441522\pi\)
\(840\) 0 0
\(841\) −22.0000 −0.758621
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 34.0000 1.16825
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 15.8745 0.544171
\(852\) 0 0
\(853\) 47.0000 1.60925 0.804625 0.593784i \(-0.202367\pi\)
0.804625 + 0.593784i \(0.202367\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 34.3948 1.17490 0.587451 0.809259i \(-0.300131\pi\)
0.587451 + 0.809259i \(0.300131\pi\)
\(858\) 0 0
\(859\) −22.0000 −0.750630 −0.375315 0.926897i \(-0.622466\pi\)
−0.375315 + 0.926897i \(0.622466\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 5.29150 0.180125 0.0900624 0.995936i \(-0.471293\pi\)
0.0900624 + 0.995936i \(0.471293\pi\)
\(864\) 0 0
\(865\) −28.0000 −0.952029
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −21.1660 −0.718008
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −15.8745 −0.536656
\(876\) 0 0
\(877\) 27.0000 0.911725 0.455863 0.890050i \(-0.349331\pi\)
0.455863 + 0.890050i \(0.349331\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.93725 0.267413 0.133706 0.991021i \(-0.457312\pi\)
0.133706 + 0.991021i \(0.457312\pi\)
\(882\) 0 0
\(883\) −44.0000 −1.48072 −0.740359 0.672212i \(-0.765344\pi\)
−0.740359 + 0.672212i \(0.765344\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −52.9150 −1.77671 −0.888356 0.459155i \(-0.848152\pi\)
−0.888356 + 0.459155i \(0.848152\pi\)
\(888\) 0 0
\(889\) 32.0000 1.07325
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 31.7490 1.06244
\(894\) 0 0
\(895\) −42.0000 −1.40391
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 10.5830 0.352963
\(900\) 0 0
\(901\) 63.0000 2.09883
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −23.8118 −0.791530
\(906\) 0 0
\(907\) −12.0000 −0.398453 −0.199227 0.979953i \(-0.563843\pi\)
−0.199227 + 0.979953i \(0.563843\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 31.7490 1.05189 0.525946 0.850518i \(-0.323711\pi\)
0.525946 + 0.850518i \(0.323711\pi\)
\(912\) 0 0
\(913\) −84.0000 −2.77999
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −21.1660 −0.698963
\(918\) 0 0
\(919\) −24.0000 −0.791687 −0.395843 0.918318i \(-0.629548\pi\)
−0.395843 + 0.918318i \(0.629548\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −7.93725 −0.260413 −0.130206 0.991487i \(-0.541564\pi\)
−0.130206 + 0.991487i \(0.541564\pi\)
\(930\) 0 0
\(931\) −18.0000 −0.589926
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −111.122 −3.63406
\(936\) 0 0
\(937\) −9.00000 −0.294017 −0.147009 0.989135i \(-0.546964\pi\)
−0.147009 + 0.989135i \(0.546964\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −10.5830 −0.344996 −0.172498 0.985010i \(-0.555184\pi\)
−0.172498 + 0.985010i \(0.555184\pi\)
\(942\) 0 0
\(943\) 42.0000 1.36771
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −10.5830 −0.342817 −0.171409 0.985200i \(-0.554832\pi\)
−0.171409 + 0.985200i \(0.554832\pi\)
\(954\) 0 0
\(955\) −56.0000 −1.81212
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −15.8745 −0.512615
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 66.1438 2.12924
\(966\) 0 0
\(967\) 22.0000 0.707472 0.353736 0.935345i \(-0.384911\pi\)
0.353736 + 0.935345i \(0.384911\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −31.7490 −1.01887 −0.509437 0.860508i \(-0.670146\pi\)
−0.509437 + 0.860508i \(0.670146\pi\)
\(972\) 0 0
\(973\) 32.0000 1.02587
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −39.6863 −1.26968 −0.634838 0.772645i \(-0.718933\pi\)
−0.634838 + 0.772645i \(0.718933\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 10.5830 0.337545 0.168773 0.985655i \(-0.446020\pi\)
0.168773 + 0.985655i \(0.446020\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −10.5830 −0.336520
\(990\) 0 0
\(991\) −54.0000 −1.71537 −0.857683 0.514178i \(-0.828097\pi\)
−0.857683 + 0.514178i \(0.828097\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −26.4575 −0.838760
\(996\) 0 0
\(997\) −7.00000 −0.221692 −0.110846 0.993838i \(-0.535356\pi\)
−0.110846 + 0.993838i \(0.535356\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6084.2.a.w.1.2 2
3.2 odd 2 inner 6084.2.a.w.1.1 2
13.4 even 6 468.2.l.e.289.1 yes 4
13.5 odd 4 6084.2.b.n.4393.2 4
13.8 odd 4 6084.2.b.n.4393.3 4
13.10 even 6 468.2.l.e.217.1 4
13.12 even 2 6084.2.a.q.1.1 2
39.5 even 4 6084.2.b.n.4393.4 4
39.8 even 4 6084.2.b.n.4393.1 4
39.17 odd 6 468.2.l.e.289.2 yes 4
39.23 odd 6 468.2.l.e.217.2 yes 4
39.38 odd 2 6084.2.a.q.1.2 2
52.23 odd 6 1872.2.t.o.1153.1 4
52.43 odd 6 1872.2.t.o.289.1 4
156.23 even 6 1872.2.t.o.1153.2 4
156.95 even 6 1872.2.t.o.289.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.l.e.217.1 4 13.10 even 6
468.2.l.e.217.2 yes 4 39.23 odd 6
468.2.l.e.289.1 yes 4 13.4 even 6
468.2.l.e.289.2 yes 4 39.17 odd 6
1872.2.t.o.289.1 4 52.43 odd 6
1872.2.t.o.289.2 4 156.95 even 6
1872.2.t.o.1153.1 4 52.23 odd 6
1872.2.t.o.1153.2 4 156.23 even 6
6084.2.a.q.1.1 2 13.12 even 2
6084.2.a.q.1.2 2 39.38 odd 2
6084.2.a.w.1.1 2 3.2 odd 2 inner
6084.2.a.w.1.2 2 1.1 even 1 trivial
6084.2.b.n.4393.1 4 39.8 even 4
6084.2.b.n.4393.2 4 13.5 odd 4
6084.2.b.n.4393.3 4 13.8 odd 4
6084.2.b.n.4393.4 4 39.5 even 4