L(s) = 1 | + (−2.83 + 1.17i)5-s + (−0.119 − 0.0496i)7-s + (0.738 − 1.78i)11-s − 3.76i·13-s + (−2.73 − 3.08i)17-s + (0.765 + 0.765i)19-s + (1.79 − 4.33i)23-s + (3.10 − 3.10i)25-s + (4.21 − 1.74i)29-s + (−3.70 − 8.93i)31-s + 0.397·35-s + (−3.12 − 7.53i)37-s + (3.47 + 1.44i)41-s + (−7.24 + 7.24i)43-s + 2.96i·47-s + ⋯ |
L(s) = 1 | + (−1.26 + 0.524i)5-s + (−0.0453 − 0.0187i)7-s + (0.222 − 0.537i)11-s − 1.04i·13-s + (−0.664 − 0.747i)17-s + (0.175 + 0.175i)19-s + (0.374 − 0.904i)23-s + (0.621 − 0.621i)25-s + (0.783 − 0.324i)29-s + (−0.665 − 1.60i)31-s + 0.0672·35-s + (−0.513 − 1.23i)37-s + (0.543 + 0.225i)41-s + (−1.10 + 1.10i)43-s + 0.433i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 612 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.134 + 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 612 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.134 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.492866 - 0.564315i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.492866 - 0.564315i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 17 | \( 1 + (2.73 + 3.08i)T \) |
good | 5 | \( 1 + (2.83 - 1.17i)T + (3.53 - 3.53i)T^{2} \) |
| 7 | \( 1 + (0.119 + 0.0496i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-0.738 + 1.78i)T + (-7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + 3.76iT - 13T^{2} \) |
| 19 | \( 1 + (-0.765 - 0.765i)T + 19iT^{2} \) |
| 23 | \( 1 + (-1.79 + 4.33i)T + (-16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (-4.21 + 1.74i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (3.70 + 8.93i)T + (-21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (3.12 + 7.53i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (-3.47 - 1.44i)T + (28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (7.24 - 7.24i)T - 43iT^{2} \) |
| 47 | \( 1 - 2.96iT - 47T^{2} \) |
| 53 | \( 1 + (-0.460 - 0.460i)T + 53iT^{2} \) |
| 59 | \( 1 + (2.86 - 2.86i)T - 59iT^{2} \) |
| 61 | \( 1 + (-11.5 - 4.80i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + 2.49T + 67T^{2} \) |
| 71 | \( 1 + (6.16 + 14.8i)T + (-50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (5.97 - 2.47i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-0.719 + 1.73i)T + (-55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (-4.97 - 4.97i)T + 83iT^{2} \) |
| 89 | \( 1 - 6.94iT - 89T^{2} \) |
| 97 | \( 1 + (-5.12 + 2.12i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63440321433248026567973414045, −9.535567685292282727538756835005, −8.463399014566948834901479120609, −7.77402692506433471109461565586, −6.96156544724657677860210707594, −5.92528362260278623749255386904, −4.65862966101094183515747542776, −3.64586416141492438454859523003, −2.70242831771907709074437040125, −0.42545423652954962297210226874,
1.59912458303567038817965516285, 3.39608849773137606754362165827, 4.31522138961105513742588106686, 5.11234183318807860693059306933, 6.65389249029701866749240924406, 7.25794928952153453573399751180, 8.412755714298071661748626000418, 8.893537573801895449397987150437, 9.989056066392140283580102948148, 11.04855673226206908701735474911